bernoulli_¶
- paddle. bernoulli_ ( x, p=0.5, name=None ) [source]
-
This is the inplace version of api
bernoulli
, which returns a Tensor filled with random values sampled from a bernoulli distribution. The output Tensor will be inplaced with inputx
. Please refer to bernoulli.- Parameters
-
x (Tensor) – The input tensor to be filled with random values.
p (float|Tensor, optional) – The success probability parameter of the output Tensor’s bernoulli distribution. If
p
is float, all elements of the output Tensor shared the same success probability. Ifp
is a Tensor, it has per-element success probabilities, and the shape should be broadcastable tox
. Default is 0.5name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
A Tensor filled with random values sampled from the bernoulli distribution with success probability
p
.
Examples
>>> import paddle >>> paddle.set_device('cpu') >>> paddle.seed(200) >>> x = paddle.randn([3, 4]) >>> x.bernoulli_() >>> print(x) Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 1., 0., 1.], [1., 1., 0., 1.], [0., 1., 0., 0.]]) >>> x = paddle.randn([3, 4]) >>> p = paddle.randn([3, 1]) >>> x.bernoulli_(p) >>> print(x) Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[1., 1., 1., 1.], [0., 0., 0., 0.], [0., 0., 0., 0.]])