prelu¶
- paddle.nn.functional. prelu ( x, weight, data_format='NCHW', name=None ) [source]
-
prelu activation. The calculation formula is follows:
\[prelu(x) = max(0, x) + weight * min(0, x)\]x and weight is input Tensor.
- Parameters
-
x (Tensor) – The input Tensor with data type float32, float64.
weight (Tensor) – The learnable parameter with data type same as
x
. The weight shape is [], [1] or [in], where in is the input channel ofx
.name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
data_format (str, optional) – Data format that specifies the layout of input. It may be “NC”, “NCL”, “NCHW”, “NCDHW”, “NLC”, “NHWC” or “NDHWC”. Default: “NCHW”.
- Returns
-
A Tensor with the same data type and shape as
x
.
Examples
>>> import paddle >>> import paddle.nn.functional as F >>> data = paddle.to_tensor([[[[-2.0, 3.0, -4.0, 5.0], ... [ 3.0, -4.0, 5.0, -6.0], ... [-7.0, -8.0, 8.0, 9.0]], ... [[ 1.0, -2.0, -3.0, 4.0], ... [-5.0, 6.0, 7.0, -8.0], ... [ 6.0, 7.0, 8.0, 9.0]]]], dtype='float32') >>> w = paddle.to_tensor([0.25], dtype='float32') >>> out = F.prelu(data, w) >>> print(out) Tensor(shape=[1, 2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[[[-0.50000000, 3. , -1. , 5. ], [ 3. , -1. , 5. , -1.50000000], [-1.75000000, -2. , 8. , 9. ]], [[ 1. , -0.50000000, -0.75000000, 4. ], [-1.25000000, 6. , 7. , -2. ], [ 6. , 7. , 8. , 9. ]]]])