tile¶
- paddle. tile ( x, repeat_times, name=None ) [source]
-
Construct a new Tensor by repeating
x
the number of times given byrepeat_times
. After tiling, the value of the i’th dimension of the output is equal tox.shape[i]*repeat_times[i]
.Both the number of dimensions of
x
and the number of elements inrepeat_times
should be less than or equal to 6.- Parameters
-
x (Tensor) – The input tensor, its data type should be bool, float16, float32, float64, int32, int64, complex64 or complex128.
repeat_times (list|tuple|Tensor) – The number of repeating times. If repeat_times is a list or tuple, all its elements should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. The data type is the same as
x
. The size of the i-th dimension is equal tox[i] * repeat_times[i]
.
Examples
>>> import paddle >>> data = paddle.to_tensor([1, 2, 3], dtype='int32') >>> out = paddle.tile(data, repeat_times=[2, 1]) >>> print(out) Tensor(shape=[2, 3], dtype=int32, place=Place(cpu), stop_gradient=True, [[1, 2, 3], [1, 2, 3]]) >>> out = paddle.tile(data, repeat_times=(2, 2)) >>> print(out) Tensor(shape=[2, 6], dtype=int32, place=Place(cpu), stop_gradient=True, [[1, 2, 3, 1, 2, 3], [1, 2, 3, 1, 2, 3]]) >>> repeat_times = paddle.to_tensor([1, 2], dtype='int32') >>> out = paddle.tile(data, repeat_times=repeat_times) >>> print(out) Tensor(shape=[1, 6], dtype=int32, place=Place(cpu), stop_gradient=True, [[1, 2, 3, 1, 2, 3]])