MaxPool3D¶
- class paddle.nn. MaxPool3D ( kernel_size, stride=None, padding=0, return_mask=False, ceil_mode=False, data_format='NCDHW', name=None ) [source]
-
This operation applies 3D max pooling over input features based on the input, and kernel_size, stride, padding parameters. Input(X) and Output(Out) are in NCDHW format, where N is batch size, C is the number of channels, H is the height of the feature, D is the depth of the feature, and W is the width of the feature.
- Parameters
-
kernel_size (int|list|tuple) – The pool kernel size. If the kernel size is a tuple or list, it must contain three integers, (kernel_size_Depth, kernel_size_Height, kernel_size_Width). Otherwise, the pool kernel size will be the cube of an int.
stride (int|list|tuple, optional) – The pool stride size. If pool stride size is a tuple or list, it must contain three integers, [stride_Depth, stride_Height, stride_Width). Otherwise, the pool stride size will be a cube of an int. Default None, then stride will be equal to the kernel_size.
padding (str|int|list|tuple, optional) – The padding size. Padding could be in one of the following forms. 1. A string in [‘valid’, ‘same’]. 2. An int, which means the feature map is zero padded by size of padding on every sides. 3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension. 4. A list[int] or tuple(int) whose length is . [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side. 5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], …]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0). The default value is 0.
ceil_mode (bool, optional) – ${ceil_mode_comment}
return_mask (bool, optional) – Whether to return the max indices along with the outputs.
data_format (str, optional) – The data format of the input and output data. An optional string from: “NCDHW”, “NDHWC”. The default is “NCDHW”. When it is “NCDHW”, the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
name (str, optional) – For detailed information, please refer to Name. Usually name is no need to set and None by default.
- Returns
-
A callable object of MaxPool3D.
- Shape:
-
x(Tensor): The input tensor of max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
output(Tensor): The output tensor of max pool3d operator, which is a 5-D tensor. The data type is same as input x.
Examples
>>> import paddle >>> import paddle.nn as nn >>> # max pool3d >>> input = paddle.uniform([1, 2, 3, 32, 32], dtype="float32", min=-1, max=1) >>> MaxPool3D = nn.MaxPool3D(kernel_size=2, stride=2, padding=0) >>> output = MaxPool3D(input) >>> print(output.shape) [1, 2, 1, 16, 16] >>> # for return_mask=True >>> MaxPool3D = nn.MaxPool3D(kernel_size=2, stride=2, padding=0, return_mask=True) >>> output, max_indices = MaxPool3D(input) >>> print(output.shape) [1, 2, 1, 16, 16] >>> print(max_indices.shape) [1, 2, 1, 16, 16]
-
forward
(
x
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments
-
extra_repr
(
)
extra_repr¶
-
Extra representation of this layer, you can have custom implementation of your own layer.