where¶
- paddle. where ( condition, x=None, y=None, name=None ) [source]
-
Return a Tensor of elements selected from either
x
ory
according to corresponding elements ofcondition
. Concretely,\[\begin{split}out_i = \begin{cases} x_i, & \text{if} \ condition_i \ \text{is} \ True \\ y_i, & \text{if} \ condition_i \ \text{is} \ False \\ \end{cases}.\end{split}\]Notes
numpy.where(condition)
is identical topaddle.nonzero(condition, as_tuple=True)
, please refer to nonzero.- Parameters
-
condition (Tensor) – The condition to choose x or y. When True (nonzero), yield x, otherwise yield y.
x (Tensor|scalar, optional) – A Tensor or scalar to choose when the condition is True with data type of bfloat16, float16, float32, float64, int32 or int64. Either both or neither of x and y should be given.
y (Tensor|scalar, optional) – A Tensor or scalar to choose when the condition is False with data type of bfloat16, float16, float32, float64, int32 or int64. Either both or neither of x and y should be given.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
A Tensor with the same shape as
condition
and same data type asx
andy
. - Return type
-
Tensor
Examples
>>> import paddle >>> x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2]) >>> y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0]) >>> out = paddle.where(x>1, x, y) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [1. , 1. , 3.20000005, 1.20000005]) >>> out = paddle.where(x>1) >>> print(out) (Tensor(shape=[2, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[2], [3]]),)