CosineAnnealingWarmRestarts¶
- class paddle.optimizer.lr. CosineAnnealingWarmRestarts ( learning_rate, T_0, T_mult=1, eta_min=0, last_epoch=- 1, verbose=False ) [source]
-
Set the learning rate of each parameter group using a cosine annealing schedule, where \(\eta_{max}\) is set to the initial lr, \(T_{cur}\) is the number of epochs since the last restart and \(T_{i}\) is the number of epochs between two warm restarts in SGDR:
\[\eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + \cos\left(\frac{T_{cur}}{T_{i}}\pi\right)\right)\]When \(T_{cur}=T_{i}\), set \(\eta_t = \eta_{min}\). When \(T_{cur}=0\) after restart, set \(\eta_t=\eta_{max}\).
It has been proposed in SGDR: Stochastic Gradient Descent with Warm Restarts.
- Parameters
-
learning_rate (float) – Initial learning rate.
T_0 (int) – Number of iterations for the first restart.
T_mult (int, optional) – A factor increases \(T_{i}\) after a restart. Default: 1.
eta_min (float, optional) – Minimum learning rate. Default: 0.
last_epoch (int, optional) – The index of last epoch. Default: -1, means initial learning rate.
verbose (bool, optional) – If
True
, prints a message to stdout for each update. Default:False
.
- Returns
-
CosineAnnealingWarmRestarts
instance to schedule learning rate.
Examples
>>> import paddle >>> import numpy as np >>> # train on default dynamic graph mode >>> linear = paddle.nn.Linear(10, 10) >>> scheduler = paddle.optimizer.lr.CosineAnnealingWarmRestarts(learning_rate=0.5, T_0=1, T_mult=2, verbose=True) >>> adam = paddle.optimizer.Adam(learning_rate=scheduler, parameters=linear.parameters()) >>> for epoch in range(10): ... for batch_id in range(10): ... x = paddle.uniform([10, 10]) ... out = linear(x) ... loss = paddle.mean(out) ... loss.backward() ... adam.step() ... adam.clear_grad() ... scheduler.step(epoch) # You should update learning rate each step
>>> import paddle >>> import numpy as np >>> paddle.enable_static() >>> main_prog = paddle.static.Program() >>> start_prog = paddle.static.Program() >>> with paddle.static.program_guard(main_prog, start_prog): ... x = paddle.static.data(name='x', shape=[None, 4, 5]) ... y = paddle.static.data(name='y', shape=[None, 4, 5]) ... z = paddle.static.nn.fc(x, 100) ... loss = paddle.mean(z) ... scheduler = paddle.optimizer.lr.CosineAnnealingWarmRestarts(learning_rate=0.5, T_0=1, T_mult=2,verbose=True) ... sgd = paddle.optimizer.SGD(learning_rate=scheduler) ... sgd.minimize(loss) >>> exe = paddle.static.Executor() >>> exe.run(start_prog) >>> for epoch in range(10): ... for batch_id in range(10): ... out = exe.run( ... main_prog, ... feed={ ... 'x': np.random.randn(3, 4, 5).astype('float32'), ... 'y': np.random.randn(3, 4, 5).astype('float32') ... }, ... fetch_list=loss.name) ... scheduler.step(epoch) # You should update learning rate each step
-
get_lr
(
)
get_lr¶
-
For those subclass who overload
LRScheduler
(Base Class), User should have a custom implementation ofget_lr()
.Otherwise, an
NotImplementedError
exception will be thrown.
-
set_dict
(
state_dict
)
set_dict¶
-
Loads the schedulers state.
-
set_state_dict
(
state_dict
)
set_state_dict¶
-
Loads the schedulers state.
-
state_dict
(
)
state_dict¶
-
Returns the state of the scheduler as a
dict
.It is a subset of
self.__dict__
.
-
state_keys
(
)
state_keys¶
-
For those subclass who overload
LRScheduler
(Base Class). Acquiescently, “last_epoch, last_lr” will be saved byself.keys = ['last_epoch', 'last_lr']
.last_epoch
is the current epoch num, andlast_lr
is the current learning rate.If you want to change the default behavior, you should have a custom implementation of
_state_keys()
to redefineself.keys
.
-
step
(
epoch=None
)
step¶
-
step should be called after optimizer.step() . It will update the learning rate in optimizer. The new learning rate will take effect on next epoch.
- Parameters
-
epoch (int, None) – specify current epoch. Default: None. Auto-increment from last_epoch=-1.
- Returns
-
None
Examples
Please refer to the example of current LRScheduler.