GELU¶
- class paddle.nn. GELU ( approximate: bool = False, name: str | None = None ) [source]
-
GELU Activation.
If approximate is True
GELU(x)=0.5∗x∗(1+tanh(√2π∗(x+0.044715x3)))else
GELU(x)=0.5∗x∗(1+erf(x√2))- Parameters
-
approximate (bool, optional) – Whether to enable approximation. Default is False.
name (str|None, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Shape:
-
input: Tensor with any shape.
output: Tensor with the same shape as input.
Examples
>>> import paddle >>> x = paddle.to_tensor([[-1, 0.5],[1, 1.5]]) >>> m = paddle.nn.GELU() >>> out = m(x) >>> print(out) Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[-0.15865529, 0.34573123], [ 0.84134471, 1.39978933]]) >>> m = paddle.nn.GELU(True) >>> out = m(x) >>> print(out) Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[-0.15880796, 0.34571400], [ 0.84119201, 1.39957154]])
-
forward
(
x: Tensor
)
Tensor
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments
-
extra_repr
(
)
str
extra_repr¶
-
Extra representation of this layer, you can have custom implementation of your own layer.