t¶
- paddle. t ( input, name=None ) [source]
-
Transpose <=2-D tensor. 0-D and 1-D tensors are returned as it is and 2-D tensor is equal to the paddle.transpose function which perm dimensions set 0 and 1.
- Parameters
-
input (Tensor) – The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
- Return type
-
Tensor
Examples
>>> import paddle >>> # Example 1 (0-D tensor) >>> x = paddle.to_tensor([0.79]) >>> out = paddle.t(x) >>> print(out) Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, [0.79000002]) >>> # Example 2 (1-D tensor) >>> x = paddle.to_tensor([0.79, 0.84, 0.32]) >>> out2 = paddle.t(x) >>> print(out2) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [0.79000002, 0.83999997, 0.31999999]) >>> print(paddle.t(x).shape) [3] >>> # Example 3 (2-D tensor) >>> x = paddle.to_tensor([[0.79, 0.84, 0.32], ... [0.64, 0.14, 0.57]]) >>> print(x.shape) [2, 3] >>> out3 = paddle.t(x) >>> print(out3) Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.79000002, 0.63999999], [0.83999997, 0.14000000], [0.31999999, 0.56999999]]) >>> print(paddle.t(x).shape) [3, 2]