square_error_cost¶
- paddle.nn.functional. square_error_cost ( input, label ) [source]
-
This op accepts input predictions and target label and returns the squared error cost.
For predictions label, and target label, the equation is:
\[Out = (input - label)^2\]- Parameters
-
input (Tensor) – Input tensor, the data type should be float32.
label (Tensor) – Label tensor, the data type should be float32.
- Returns
-
Tensor, The tensor storing the element-wise squared error difference between input and label.
Examples
>>> import paddle >>> input = paddle.to_tensor([1.1, 1.9]) >>> label = paddle.to_tensor([1.0, 2.0]) >>> output = paddle.nn.functional.square_error_cost(input, label) >>> print(output) Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [0.01000000, 0.01000000])