Independent¶
- class paddle.distribution. Independent ( base, reinterpreted_batch_rank ) [source]
-
Reinterprets some of the batch dimensions of a distribution as event dimensions.
This is mainly useful for changing the shape of the result of
log_prob()
.- Parameters
-
base (Distribution) – The base distribution.
reinterpreted_batch_rank (int) – The number of batch dimensions to reinterpret as event dimensions.
Examples
>>> import paddle >>> from paddle.distribution import independent >>> beta = paddle.distribution.Beta(paddle.to_tensor([0.5, 0.5]), paddle.to_tensor([0.5, 0.5])) >>> print(beta.batch_shape, beta.event_shape) (2,) () >>> print(beta.log_prob(paddle.to_tensor(0.2))) Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True, [-0.22843921, -0.22843921]) >>> reinterpreted_beta = independent.Independent(beta, 1) >>> print(reinterpreted_beta.batch_shape, reinterpreted_beta.event_shape) () (2,) >>> print(reinterpreted_beta.log_prob(paddle.to_tensor([0.2, 0.2]))) Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True, -0.45687842)
- property mean
-
Mean of distribution
- property variance
-
Variance of distribution
-
sample
(
shape=()
)
sample¶
-
Sampling from the distribution.
-
log_prob
(
value
)
log_prob¶
-
Log probability density/mass function.
-
prob
(
value
)
prob¶
-
Probability density/mass function evaluated at value.
- Parameters
-
value (Tensor) – value which will be evaluated
-
entropy
(
)
entropy¶
-
The entropy of the distribution.
- property batch_shape
-
Returns batch shape of distribution
- Returns
-
batch shape
- Return type
-
Sequence[int]
- property event_shape
-
Returns event shape of distribution
- Returns
-
event shape
- Return type
-
Sequence[int]
-
kl_divergence
(
other
)
[source]
kl_divergence¶
-
The KL-divergence between self distributions and other.
-
probs
(
value
)
probs¶
-
Probability density/mass function.
Note
This method will be deprecated in the future, please use prob instead.
-
rsample
(
shape=()
)
rsample¶
-
reparameterized sample