MultiplicativeDecay¶
- class paddle.optimizer.lr. MultiplicativeDecay ( learning_rate, lr_lambda, last_epoch=- 1, verbose=False ) [source]
-
Multiply the learning rate of
optimizer
by the factor given in functionlr_lambda
.The algorithm can be described as the code below.
learning_rate = 0.5 # init learning_rate lr_lambda = lambda epoch: 0.95 learning_rate = 0.5 # epoch 0, learning_rate = 0.475 # epoch 1, 0.5*0.95 learning_rate = 0.45125 # epoch 2, 0.475*0.95
- Parameters
-
learning_rate (float) – The initial learning rate. It is a python float number.
lr_lambda (function) – A function which computes a factor by
epoch
, and then multiply the last learning rate by this factor.last_epoch (int, optional) – The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
verbose (bool, optional) – If
True
, prints a message to stdout for each update. Default:False
.
- Returns
-
MultiplicativeDecay
instance to schedule learning rate.
Examples
>>> import paddle >>> # train on default dynamic graph mode >>> linear = paddle.nn.Linear(10, 10) >>> scheduler = paddle.optimizer.lr.MultiplicativeDecay(learning_rate=0.5, lr_lambda=lambda x:0.95, verbose=True) >>> sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters()) >>> for epoch in range(20): ... for batch_id in range(5): ... x = paddle.uniform([10, 10]) ... out = linear(x) ... loss = paddle.mean(out) ... loss.backward() ... sgd.step() ... sgd.clear_gradients() ... scheduler.step() # If you update learning rate each step ... # scheduler.step() # If you update learning rate each epoch ...
-
get_lr
(
)
get_lr¶
-
For those subclass who overload
LRScheduler
(Base Class), User should have a custom implementation ofget_lr()
.Otherwise, an
NotImplementedError
exception will be thrown.
-
set_dict
(
state_dict
)
set_dict¶
-
Loads the schedulers state.
-
set_state_dict
(
state_dict
)
set_state_dict¶
-
Loads the schedulers state.
-
state_dict
(
)
state_dict¶
-
Returns the state of the scheduler as a
dict
.It is a subset of
self.__dict__
.
-
state_keys
(
)
state_keys¶
-
For those subclass who overload
LRScheduler
(Base Class). Acquiescently, “last_epoch, last_lr” will be saved byself.keys = ['last_epoch', 'last_lr']
.last_epoch
is the current epoch num, andlast_lr
is the current learning rate.If you want to change the default behavior, you should have a custom implementation of
_state_keys()
to redefineself.keys
.
-
step
(
epoch=None
)
step¶
-
step
should be called afteroptimizer.step
. It will update the learning rate in optimizer according to currentepoch
. The new learning rate will take effect on nextoptimizer.step
.- Parameters
-
epoch (int, None) – specify current epoch. Default: None. Auto-increment from last_epoch=-1.
- Returns
-
None
Examples
>>> import paddle >>> value = paddle.arange(26, dtype='float32') >>> a = paddle.reshape(value, [2, 13]) >>> linear = paddle.nn.Linear(13, 5) >>> adadelta = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1e-06, rho=0.95, ... parameters = linear.parameters()) >>> out = linear(a) >>> out.backward() >>> adadelta.step() >>> adadelta.clear_grad()
>>> import paddle >>> value = paddle.arange(26, dtype='float32') >>> a = paddle.reshape(value, [2, 13]) >>> linear = paddle.nn.Linear(13, 5) >>> adadelta = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1e-06, rho=0.95, ... parameters = linear.parameters()) >>> out = linear(a) >>> out.backward() >>> adadelta.step() >>> adadelta.clear_grad()