InverseTimeDecay

class paddle.optimizer.lr. InverseTimeDecay ( learning_rate, gamma, last_epoch=- 1, verbose=False ) [source]

Applies inverse time decay to the initial learning rate.

The algorithm can be described as following:

\[new\_learning\_rate = \frac{learning\_rate}{1 + gamma * epoch}\]
Parameters
  • learning_rate (float) – The initial learning rate. It is a python float number.

  • gamma (float, optional) – The Ratio that the learning rate will be reduced. new_lr = origin_lr * gamma . It should be less than 1.0. Default: 0.1.

  • last_epoch (int, optional) – The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.

  • verbose (bool, optional) – If True, prints a message to stdout for each update. Default: False .

Returns

InverseTimeDecay instance to schedule learning rate.

Examples

>>> # Example1: train on default dynamic graph mode
>>> import paddle
>>> import numpy as np

>>> # train on default dynamic graph mode
>>> linear = paddle.nn.Linear(10, 10)
>>> scheduler = paddle.optimizer.lr.InverseTimeDecay(learning_rate=0.5, gamma=0.1, verbose=True)
>>> sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
>>> for epoch in range(20):
...     for batch_id in range(5):
...         x = paddle.uniform([10, 10])
...         out = linear(x)
...         loss = paddle.mean(out)
...         loss.backward()
...         sgd.step()
...         sgd.clear_gradients()
...         scheduler.step()    # If you update learning rate each step
...     # scheduler.step()        # If you update learning rate each epoch
>>> # Example2: train on static graph mode
>>> import paddle
>>> import numpy as np
>>> paddle.enable_static()
>>> main_prog = paddle.static.Program()
>>> start_prog = paddle.static.Program()
>>> with paddle.static.program_guard(main_prog, start_prog):
...     x = paddle.static.data(name='x', shape=[None, 4, 5])
...     y = paddle.static.data(name='y', shape=[None, 4, 5])
...     z = paddle.static.nn.fc(x, 100)
...     loss = paddle.mean(z)
...     scheduler = paddle.optimizer.lr.InverseTimeDecay(learning_rate=0.5, gamma=0.1, verbose=True)
...     sgd = paddle.optimizer.SGD(learning_rate=scheduler)
...     sgd.minimize(loss)
...
>>> exe = paddle.static.Executor()
>>> exe.run(start_prog)
>>> for epoch in range(20):
...     for batch_id in range(5):
...         out = exe.run(
...             main_prog,
...             feed={
...                 'x': np.random.randn(3, 4, 5).astype('float32'),
...                 'y': np.random.randn(3, 4, 5).astype('float32')
...             },
...             fetch_list=loss.name)
...         scheduler.step()    # If you update learning rate each step
...     # scheduler.step()        # If you update learning rate each epoch
...
get_lr ( )

get_lr

For those subclass who overload LRScheduler (Base Class), User should have a custom implementation of get_lr() .

Otherwise, an NotImplementedError exception will be thrown.

set_dict ( state_dict )

set_dict

Loads the schedulers state.

set_state_dict ( state_dict )

set_state_dict

Loads the schedulers state.

state_dict ( )

state_dict

Returns the state of the scheduler as a dict.

It is a subset of self.__dict__ .

state_keys ( )

state_keys

For those subclass who overload LRScheduler (Base Class). Acquiescently, “last_epoch, last_lr” will be saved by self.keys = ['last_epoch', 'last_lr'] .

last_epoch is the current epoch num, and last_lr is the current learning rate.

If you want to change the default behavior, you should have a custom implementation of _state_keys() to redefine self.keys .

step ( epoch=None )

step

step should be called after optimizer.step . It will update the learning rate in optimizer according to current epoch . The new learning rate will take effect on next optimizer.step .

Parameters

epoch (int, None) – specify current epoch. Default: None. Auto-increment from last_epoch=-1.

Returns

None

Examples

>>> import paddle
>>> value = paddle.arange(26, dtype='float32')
>>> a = paddle.reshape(value, [2, 13])
>>> linear = paddle.nn.Linear(13, 5)
>>> adadelta = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1e-06, rho=0.95,
...                             parameters = linear.parameters())
>>> out = linear(a)
>>> out.backward()
>>> adadelta.step()
>>> adadelta.clear_grad()
>>> import paddle
>>> value = paddle.arange(26, dtype='float32')
>>> a = paddle.reshape(value, [2, 13])
>>> linear = paddle.nn.Linear(13, 5)
>>> adadelta = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1e-06, rho=0.95,
...                             parameters = linear.parameters())
>>> out = linear(a)
>>> out.backward()
>>> adadelta.step()
>>> adadelta.clear_grad()