Fleet¶
- class paddle.distributed.fleet. Fleet [source]
-
Unified API for distributed training of PaddlePaddle. Please reference the https://github.com/PaddlePaddle/PaddleFleetX for details
- Returns
-
A Fleet instance
- Return type
-
Fleet
Examples
>>> # Example1: for collective training >>> import paddle >>> paddle.enable_static() >>> import paddle.distributed.fleet as fleet >>> fleet.init(is_collective=True) >>> strategy = fleet.DistributedStrategy() >>> linear = paddle.nn.Linear(10, 10) >>> optimizer = paddle.optimizer.SGD(learning_rate=0.001, parameters=linear.parameters()) >>> optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy) >>> # do distributed training
>>> # Example2: for parameter server training >>> import paddle >>> paddle.enable_static() >>> import paddle.distributed.fleet as fleet >>> strategy = fleet.DistributedStrategy() >>> fleet.init(strategy=strategy) >>> optimizer = paddle.optimizer.SGD(learning_rate=0.001) >>> optimizer = fleet.distributed_optimizer(optimizer) >>> if fleet.is_first_worker(): ... print("this is first worker") >>> print("current node index: {}".format(fleet.worker_index())) >>> print("total number of worker num: {}".format(fleet.worker_num())) >>> if fleet.is_worker(): ... print("this is worker") >>> print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True))) >>> print("server num: {}".format(fleet.server_num())) >>> print("server endpoints: {}".format(fleet.server_endpoints(to_string=True))) >>> if fleet.is_server(): ... print("this is server") >>> fleet.stop_worker()
-
init
(
role_maker=None,
is_collective=False,
strategy=None,
log_level='INFO'
)
[source]
init¶
-
Initialize role_maker in Fleet.
This function is responsible for the distributed architecture what you want to run your code behind.
- Parameters
-
role_maker (RoleMakerBase, optional) – A
RoleMakerBase
containing the configuration of environment variables related to distributed training.If you did not initialize the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker. The default value is None.is_collective (Boolean, optional) – A
Boolean
variable determines whether the program runs on Collective mode or ParameterServer mode. True means the program runs on Collective mode, and False means running on ParameterServer mode. The default value is False.strategy (DistributedStrategy) – Extra properties for distributed training. For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.
log_level (Integer, String, optional) – A
Integer
orString
Variable determining how hight the logging level is. Default is “INFO”.
- Returns
-
None
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init()
>>> import paddle.distributed.fleet as fleet >>> fleet.init(is_collective=True)
>>> import paddle.distributed.fleet as fleet >>> role = fleet.PaddleCloudRoleMaker() >>> fleet.init(role)
>>> import paddle.distributed.fleet as fleet >>> strategy = fleet.DistributedStrategy() >>> fleet.init(strategy=strategy)
>>> import paddle.distributed.fleet as fleet >>> strategy = fleet.DistributedStrategy() >>> fleet.init(log_level = "DEBUG")
-
collective_perf
(
comm_type,
round=50,
size_and_time={}
)
[source]
collective_perf¶
-
Run performance test for given communication type and compare the time cost with the threshold.
- Parameters
-
comm_type (str) – Communication type for performance test. Currently support “allreduce”, “broadcast”, “reduce”, “allgather” and “reduce_scatter”.
round (int, optional) – Loop times for performance test. More loops will cost more time and provide more accurate result. Defaults to 50.
size_and_time (dict, optional) – Message sizes and time thresholds for performance test. each pair will invoke a performance check. Defaults to {}, which indicates acting performance check from 1MB to 1GB without threshold set.
- Returns
-
None
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init(is_collective=True) >>> # run two tests, one with 1MB (threshold 0.5s) and another with 1GB (threshold 1s) >>> size_and_time = {1<<20: 0.5, 1<<30: 1} >>> fleet.collective_perf("allreduce", round=50, size_and_time = size_and_time)
-
is_first_worker
(
)
[source]
is_first_worker¶
-
Check whether the node is the first instance of worker.
- Returns
-
True if this is the first node of worker, False if not.
- Return type
-
bool
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> fleet.is_first_worker()
-
worker_index
(
)
[source]
worker_index¶
-
Get current worker index.
- Returns
-
node id
- Return type
-
int
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> fleet.worker_index()
-
worker_num
(
)
[source]
worker_num¶
-
Get current total worker number.
- Returns
-
worker numbers
- Return type
-
int
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> fleet.worker_num()
-
is_worker
(
)
[source]
is_worker¶
-
Check whether the node is an instance of worker.
- Returns
-
- True if this is a node of worker,
-
False if not.
- Return type
-
bool
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> fleet.is_worker()
-
worker_endpoints
(
to_string=False
)
[source]
worker_endpoints¶
-
Get current worker endpoints, such as [“127.0.0.1:1001”, “127.0.0.1:1002”].
- Returns
-
server endpoints
- Return type
-
list/string
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> fleet.worker_endpoints()
-
server_num
(
)
[source]
server_num¶
-
Get current total worker number.
- Returns
-
server number
- Return type
-
int
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> fleet.server_num()
-
server_index
(
)
[source]
server_index¶
-
Get current server index.
- Returns
-
node id
- Return type
-
int
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> fleet.server_index()
-
server_endpoints
(
to_string=False
)
[source]
server_endpoints¶
-
Get current server endpoints, such as [“127.0.0.1:1001”, “127.0.0.1:1002”].
- Returns
-
server endpoints
- Return type
-
list/string
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> fleet.server_endpoints()
-
is_server
(
)
[source]
is_server¶
-
Check whether the node is an instance of server.
- Returns
-
- True if this is a node of server,
-
False if not.
- Return type
-
bool
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> fleet.is_server()
-
barrier_worker
(
)
[source]
barrier_worker¶
-
barrier all workers
- Returns
-
None
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> fleet.barrier_worker()
-
all_reduce
(
input,
mode='sum'
)
[source]
all_reduce¶
-
all reduce input between all workers, mode can be sum, mean or max, default is sum
- Returns
-
all reduce result
- Return type
-
list/int
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> res = fleet.all_reduce(5)
-
init_worker
(
scopes=None
)
[source]
init_worker¶
-
initialize Communicator for parameter server training.
- Returns
-
None
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> # build net >>> # fleet.distributed_optimizer(...) >>> fleet.init_worker()
-
init_server
(
*args,
**kwargs
)
[source]
init_server¶
-
init_server executor to initialize startup program, if the args is not empty, it will run load_persistables for increment training.
- Returns
-
None
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> # build net >>> # fleet.distributed_optimizer(...) >>> fleet.init_server()
-
load_model
(
path,
mode
)
[source]
load_model¶
-
load fleet model from path
- Returns
-
None
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> # build net >>> # fleet.distributed_optimizer(...) >>> fleet.load_model("path", mode=0)
-
load_one_table
(
table_id,
path,
mode
)
[source]
load_one_table¶
-
load fleet one table from path
- Returns
-
None
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> # build net >>> # fleet.distributed_optimizer(...) >>> fleet.load_one_table(0, "path", mode=0)
-
load_inference_model
(
path,
mode
)
[source]
load_inference_model¶
-
load fleet inference model from path
- Returns
-
None
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> # build net >>> # fleet.distributed_optimizer(...) >>> fleet.load_inference_model("path", mode=1)
-
run_server
(
)
[source]
run_server¶
-
run server will run pserver main program with executor.
- Returns
-
None
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> # build net >>> # fleet.distributed_optimizer(...) >>> if fleet.is_server(): ... fleet.init_server()
-
stop_worker
(
)
[source]
stop_worker¶
-
stop Communicator and give training complete notice to parameter server.
- Returns
-
None
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> # build net >>> # fleet.distributed_optimizer(...) >>> fleet.init_server()
-
save_inference_model
(
executor,
dirname,
feeded_var_names,
target_vars,
main_program=None,
export_for_deployment=True,
mode=0
)
[source]
save_inference_model¶
-
save inference model for inference.
- Returns
-
None
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> # build net >>> # fleet.distributed_optimizer(...) >>> fleet.init_server()
-
save_persistables
(
executor,
dirname,
main_program=None,
mode=0
)
[source]
save_persistables¶
-
saves all persistable tensors from
main_program
to the folderdirname
. You can refer toThe
dirname
is used to specify the folder where persistable tensors are going to be saved. If you would like to save tensors in separate files, setfilename
None.- Parameters
-
executor (Executor) – The executor to run for saving persistable tensors. You can refer to Executor for more details.
dirname (str, optional) – The saving directory path. When you need to save the parameter to the memory, set it to None.
main_program (Program, optional) – The program whose persistable tensors will be saved. Default: None.
- Returns
-
None
Examples
>>> import paddle >>> paddle.enable_static() >>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> # build net >>> # fleet.distributed_optimizer(...) >>> exe = paddle.static.Executor(paddle.CPUPlace()) >>> fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
-
save_one_table
(
table_id,
path,
mode
)
[source]
save_one_table¶
-
save fleet one table from path
- Returns
-
None
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> # build net >>> # fleet.distributed_optimizer(...) >>> fleet.save_one_table(0, "path", mode=0)
-
save_dense_params
(
executor,
dirname,
scope,
program,
var_names=None
)
[source]
save_dense_params¶
-
save fleet one table from path
- Returns
-
None
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> import paddle >>> place = paddle.CPUPlace() >>> exe = paddle.static.Executor(place) >>> # build net >>> # fleet.distributed_optimizer(...) >>> fleet.save_dense_params(exe, "path", scope=paddle.static.global_scope(), program=paddle.static.default_main_program())
-
set_date
(
table_id,
day_id
)
[source]
set_date¶
-
set_date for gpups table
- Returns
-
None
Examples
>>> import paddle.distributed.fleet as fleet >>> fleet.init() >>> # build net >>> # fleet.distributed_optimizer(...) >>> fleet.set_date(0, "20250101")
-
distributed_optimizer
(
optimizer,
strategy=None
)
[source]
distributed_optimizer¶
-
Optimizer for distributed training.
For the distributed training, this method would rebuild a new instance of DistributedOptimizer. Which has basic Optimizer function and special features for distributed training.
- Parameters
-
optimizer (Optimizer) – The executor to run for init server.
strategy (DistributedStrategy) – Extra properties for distributed optimizer. It is recommended to use DistributedStrategy in fleet.init(). The strategy here is for compatibility. If the strategy in fleet.distributed_optimizer() is not None, then it will overwrite the DistributedStrategy in fleet.init(), which will take effect in distributed training.
- Returns
-
instance of fleet.
- Return type
-
Fleet
Examples
>>> import paddle >>> import paddle.distributed.fleet as fleet >>> fleet.init(is_collective=True) >>> linear = paddle.nn.Linear(10, 10) >>> strategy = fleet.DistributedStrategy() >>> optimizer = paddle.optimizer.SGD(learning_rate=0.001, parameters=linear.parameters()) >>> optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
-
get_loss_scaling
(
)
get_loss_scaling¶
-
Return the real-time loss scaling factor.
-
amp_init
(
place,
scope=None,
test_program=None,
use_fp16_test=False
)
amp_init¶
-
Init the amp training, such as cast fp32 parameters to fp16 type.
- Parameters
-
place (CUDAPlace) – place is used to initialize fp16 parameters with fp32 values.
scope (Scope) – The scope is used to find fp32 parameters.
test_program (Program) – The program is used for testing.
use_fp16_test (bool) – Whether to use fp16 testing.
Examples
>>> import paddle >>> import paddle.nn.functional as F >>> paddle.enable_static() >>> def run_example_code(): ... place = paddle.CUDAPlace(0) ... exe = paddle.static.Executor(place) ... data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32') ... conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3) ... # 1) Use fp16_guard to control the range of fp16 kernels used. ... with paddle.static.amp.fp16_guard(): ... bn = paddle.static.nn.batch_norm(input=conv2d, act="relu") ... pool = F.max_pool2d(bn, kernel_size=2, stride=2) ... hidden = paddle.static.nn.fc(pool, size=10) ... loss = paddle.mean(hidden) ... # 2) Create the optimizer and set `multi_precision` to True. ... # Setting `multi_precision` to True can avoid the poor accuracy ... # or the slow convergence in a way. ... optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True) ... # 3) These ops in `custom_black_list` will keep in the float32 computation type. ... amp_list = paddle.static.amp.CustomOpLists( ... custom_black_list=['pool2d']) ... # 4) The entry of Paddle AMP. ... # Enable pure fp16 training by setting `use_pure_fp16` to True. ... optimizer = paddle.static.amp.decorate( ... optimizer, ... amp_list, ... init_loss_scaling=128.0, ... use_dynamic_loss_scaling=True, ... use_pure_fp16=True) ... # If you don't use the default_startup_program(), you should pass ... # your defined `startup_program` into `minimize`. ... optimizer.minimize(loss) ... exe.run(paddle.static.default_startup_program()) ... # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`). ... # If you want to perform the testing process, you should pass `test_program` into `amp_init`. ... optimizer.amp_init(place, scope=paddle.static.global_scope()) >>> if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0: ... run_example_code()
-
qat_init
(
place,
scope=None,
test_program=None
)
qat_init¶
-
Init the qat training, such as insert qdq ops and scale variables.
- Parameters
-
place (CUDAPlace) – place is used to initialize scale parameters.
scope (Scope) – The scope is used to find parameters and variables.
test_program (Program) – The program is used for testing.
-
minimize
(
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None
)
[source]
minimize¶
-
Add distributed operations to minimize
loss
by updatingparameter_list
.- Parameters
-
loss (Tensor) – A
Tensor
containing the value to minimize.startup_program (Program, optional) – Program for initializing parameters in
parameter_list
. The default value is None, at this time default_startup_program will be used.parameter_list (Iterable, optional) – Iterable of
Tensor
orTensor.name
to update to minimizeloss
. The default value is None, at this time all parameters will be updated.no_grad_set (set, optional) – Set of
Tensor
orTensor.name
that don’t need to be updated. The default value is None.
- Returns
-
tuple (optimize_ops, params_grads), A list of operators appended by minimize and a list of (param, grad) tensor pairs, param is
Parameter
, grad is the gradient value corresponding to the parameter. The returned tuple can be passed tofetch_list
inExecutor.run()
to indicate program pruning. If so, the program will be pruned byfeed
andfetch_list
before run, see details inExecutor
. - Return type
-
tuple
Examples
>>> import paddle >>> paddle.enable_static() >>> import paddle.distributed.fleet as fleet >>> import paddle.nn.functional as F >>> hid_dim = 10 >>> label_dim = 2 >>> input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32') >>> input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64') >>> fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh') >>> fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh') >>> prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax') >>> cost = F.cross_entropy(input=prediction, label=input_y) >>> avg_cost = paddle.mean(x=cost) >>> fleet.init(is_collective=True) >>> strategy = fleet.DistributedStrategy() >>> linear = paddle.nn.Linear(10, 10) >>> optimizer = paddle.optimizer.SGD(learning_rate=0.001, parameters=linear.parameters()) >>> optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy) >>> optimizer.minimize(avg_cost) >>> # for more examples, please reference https://github.com/PaddlePaddle/PaddleFleetX