PixelShuffle¶
- class paddle.nn. PixelShuffle ( upscale_factor, data_format='NCHW', name=None ) [source]
-
Rearranges elements in a tensor of shape \([N, C, H, W]\) to a tensor of shape \([N, C/upscale_factor^2, H*upscale_factor, W*upscale_factor]\), or from shape \([N, H, W, C]\) to \([N, H*upscale_factor, W*upscale_factor, C/upscale_factor^2]\). This is useful for implementing efficient sub-pixel convolution with a stride of 1/upscale_factor. Please refer to the paper: Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network . by Shi et. al (2016) for more details.
- Parameters
-
upscale_factor (int) – factor to increase spatial resolution.
data_format (str, optional) – The data format of the input and output data. An optional string from: ‘NCHW’`,
'NHWC'
. When it is'NCHW'
, the data is stored in the order of: [batch_size, input_channels, input_height, input_width]. Default:'NCHW'
.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Shape:
-
x: 4-D tensor with shape of \((N, C, H, W)\) or \((N, H, W, C)\).
out: 4-D tensor with shape of \((N, C/upscale_factor^2, H*upscale_factor, W*upscale_factor)\) or \((N, H*upscale_factor, W*upscale_factor, C/upscale_factor^2)\).
Examples
>>> import paddle >>> import paddle.nn as nn >>> x = paddle.randn(shape=[2, 9, 4, 4]) >>> pixel_shuffle = nn.PixelShuffle(3) >>> out = pixel_shuffle(x) >>> print(out.shape) [2, 1, 12, 12]
-
forward
(
x
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments
-
extra_repr
(
)
extra_repr¶
-
Extra representation of this layer, you can have custom implementation of your own layer.