view¶
- paddle. view ( x, shape_or_dtype, name=None ) [source]
-
View x with specified shape or dtype.
Note that the output Tensor will share data with origin Tensor and doesn’t have a Tensor copy in
dygraph
mode.- Parameters
-
x (Tensor) – An N-D Tensor. The data type is
float32
,float64
,int32
,int64
orbool
shape_or_dtype (list|tuple|np.dtype|str|VarType) – Define the target shape or dtype. If list or tuple, shape_or_dtype represents shape, each element of it should be integer. If np.dtype or str or VarType, shape_or_dtype represents dtype, it can be bool, float16, float32, float64, int8, int32, int64, uint8.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, A viewed Tensor with the same data as
x
.
Examples
>>> import paddle >>> paddle.base.set_flags({"FLAGS_use_stride_kernel": True}) >>> x = paddle.rand([2, 4, 6], dtype="float32") >>> out = paddle.view(x, [8, 6]) >>> print(out.shape) [8, 6] >>> import paddle >>> paddle.base.set_flags({"FLAGS_use_stride_kernel": True}) >>> x = paddle.rand([2, 4, 6], dtype="float32") >>> out = paddle.view(x, "uint8") >>> print(out.shape) [2, 4, 24] >>> import paddle >>> paddle.base.set_flags({"FLAGS_use_stride_kernel": True}) >>> x = paddle.rand([2, 4, 6], dtype="float32") >>> out = paddle.view(x, [8, -1]) >>> print(out.shape) [8, 6] >>> import paddle >>> paddle.base.set_flags({"FLAGS_use_stride_kernel": True}) >>> x = paddle.rand([2, 4, 6], dtype="float32") >>> out = paddle.view(x, paddle.uint8) >>> print(out.shape) [2, 4, 24]