prior_box¶
- paddle.vision.ops. prior_box ( input, image, min_sizes, max_sizes=None, aspect_ratios=[1.0], variance=[0.1, 0.1, 0.2, 0.2], flip=False, clip=False, steps=[0.0, 0.0], offset=0.5, min_max_aspect_ratios_order=False, name=None ) [source]
-
This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the input produce N prior boxes, N is determined by the count of min_sizes, max_sizes and aspect_ratios, The size of the box is in range(min_size, max_size) interval, which is generated in sequence according to the aspect_ratios.
- Parameters
-
input (Tensor) – 4-D tensor(NCHW), the data type should be float32 or float64.
image (Tensor) – 4-D tensor(NCHW), the input image data of PriorBoxOp, the data type should be float32 or float64.
min_sizes (list|tuple|float) – the min sizes of generated prior boxes.
max_sizes (list|tuple|None, optional) – the max sizes of generated prior boxes. Default: None, means [] and will not be used.
aspect_ratios (list|tuple|float, optional) – the aspect ratios of generated prior boxes. Default: [1.0].
variance (list|tuple, optional) – the variances to be encoded in prior boxes. Default:[0.1, 0.1, 0.2, 0.2].
flip (bool) – Whether to flip aspect ratios. Default:False.
clip (bool) – Whether to clip out-of-boundary boxes. Default: False.
steps (list|tuple, optional) – Prior boxes steps across width and height, If steps[0] equals to 0.0 or steps[1] equals to 0.0, the prior boxes steps across height or weight of the input will be automatically calculated. Default: [0., 0.]
offset (float, optional)) – Prior boxes center offset. Default: 0.5
min_max_aspect_ratios_order (bool, optional) – If set True, the output prior box is in order of [min, max, aspect_ratios], which is consistent with Caffe. Please note, this order affects the weights order of convolution layer followed by and does not affect the final detection results. Default: False.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
- the output prior boxes and the expanded variances of PriorBox.
-
The prior boxes is a 4-D tensor, the layout is [H, W, num_priors, 4], num_priors is the total box count of each position of input. The expanded variances is a 4-D tensor, same shape as the prior boxes.
- Return type
-
Tensor
Examples
>>> import paddle >>> input = paddle.rand((1, 3, 6, 9), dtype=paddle.float32) >>> image = paddle.rand((1, 3, 9, 12), dtype=paddle.float32) >>> box, var = paddle.vision.ops.prior_box( ... input=input, ... image=image, ... min_sizes=[2.0, 4.0], ... clip=True, ... flip=True) ...