lcm¶
- paddle. lcm ( x, y, name=None ) [source]
-
Computes the element-wise least common multiple (LCM) of input |x| and |y|. Both x and y must have integer types.
Note
lcm(0,0)=0, lcm(0, y)=0
If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).
- Parameters
-
x (Tensor) – An N-D Tensor, the data type is int32, int64.
y (Tensor) – An N-D Tensor, the data type is int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
An N-D Tensor, the data type is the same with input.
- Return type
-
out (Tensor)
Examples
>>> import paddle >>> x1 = paddle.to_tensor(12) >>> x2 = paddle.to_tensor(20) >>> paddle.lcm(x1, x2) Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, 60) >>> x3 = paddle.arange(6) >>> paddle.lcm(x3, x2) Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True, [0, 20, 20, 60, 20, 20]) >>> x4 = paddle.to_tensor(0) >>> paddle.lcm(x4, x2) Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, 0) >>> paddle.lcm(x4, x4) Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, 0) >>> x5 = paddle.to_tensor(-20) >>> paddle.lcm(x1, x5) Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True, 60)