save

paddle. save ( obj, path, protocol=4 ) [源代码]

将对象实例 obj 保存到指定的路径中。

注解

目前支持保存:Layer 或者 Optimizer 的 state_dict,Tensor 以及包含 Tensor 的嵌套 list、tuple、dict,Program。对于 Tensor 对象,只保存了它的名字和数值,没有保存 stop_gradient 等属性,如果您需要这些没有保存的属性,请调用 set_value 接口将数值设置到带有这些属性的 Tensor 中。

注解

不同于 paddle.jit.save,由于 paddle.save 的存储结果是单个文件,所以不需要通过添加后缀的方式区分多个存储文件,paddle.save 的输入参数 path 将直接作为存储结果的文件名而非前缀。为了统一存储文件名的格式,我们推荐使用 paddle 标椎文件后缀: 1. 对于 Layer.state_dict,推荐使用后缀 .pdparams ; 2. 对于 Optimizer.state_dict,推荐使用后缀 .pdopt 。 具体示例请参考 API 的代码示例。

遇到使用问题,请参考:

参数

  • obj (Object) – 要保存的对象实例。

  • path (str|BytesIO) – 保存对象实例的路径/内存对象。如果存储到当前路径,输入的 path 字符串将会作为保存的文件名。

  • protocol (int,可选) – pickle 模块的协议版本,默认值为 4,取值范围是[2,4]。

  • configs (dict,可选) – 其他配置选项,目前支持以下选项:(1)use_binary_format(bool)- 如果被保存的对象是静态图的 Tensor,你可以指定这个参数。如果被指定为 True,这个 Tensor 会被保存为由 paddle 定义的二进制格式的文件;否则这个 Tensor 被保存为 pickle 格式。默认为 False

返回

代码示例 1

 >>> # example 1: dynamic graph
 >>> import paddle
 >>> emb = paddle.nn.Embedding(10, 10)
 >>> layer_state_dict = emb.state_dict()

 >>> # save state_dict of emb
 >>> paddle.save(layer_state_dict, "emb.pdparams")

 >>> scheduler = paddle.optimizer.lr.NoamDecay(
 ...     d_model=0.01, warmup_steps=100, verbose=True)
 >>> adam = paddle.optimizer.Adam(
 ...     learning_rate=scheduler,
 ...     parameters=emb.parameters())
 >>> opt_state_dict = adam.state_dict()

 >>> # save state_dict of optimizer
 >>> paddle.save(opt_state_dict, "adam.pdopt")
 >>> # save weight of emb
 >>> paddle.save(emb.weight, "emb.weight.pdtensor")

代码示例 2

 >>> # example 2: Save multiple state_dict at the same time
 >>> import paddle
 >>> from paddle import nn
 >>> from paddle.optimizer import Adam

 >>> layer = paddle.nn.Linear(3, 4)
 >>> adam = Adam(learning_rate=0.001, parameters=layer.parameters())
 >>> obj = {'model': layer.state_dict(), 'opt': adam.state_dict(), 'epoch': 100}
 >>> path = 'example/model.pdparams'
 >>> paddle.save(obj, path)

代码示例 3

 >>> # example 3: static graph
 >>> import paddle
 >>> import paddle.static as static

 >>> paddle.enable_static()

 >>> # create network
 >>> x = paddle.static.data(name="x", shape=[None, 224], dtype='float32')
 >>> z = paddle.static.nn.fc(x, 10)

 >>> place = paddle.CPUPlace()
 >>> exe = paddle.static.Executor(place)
 >>> exe.run(paddle.static.default_startup_program())
 >>> prog = paddle.static.default_main_program()
 >>> for var in prog.list_vars():
 ...     if list(var.shape) == [224, 10]:
 ...         tensor = var.get_value()
 ...         break

 >>> # save/load tensor
 >>> path_tensor = 'temp/tensor.pdtensor'
 >>> paddle.save(tensor, path_tensor)

 >>> # save/load state_dict
 >>> path_state_dict = 'temp/model.pdparams'
 >>> paddle.save(prog.state_dict("param"), path_tensor)

代码示例 4

 >>> # example 4: save program
 >>> import paddle

 >>> paddle.enable_static()

 >>> data = paddle.static.data(
 ...     name='x_static_save', shape=(None, 224), dtype='float32')
 >>> y_static = z = paddle.static.nn.fc(data, 10)
 >>> main_program = paddle.static.default_main_program()
 >>> path = "example/main_program.pdmodel"
 >>> paddle.save(main_program, path)

代码示例 5

 >>> # example 5: save object to memory
 >>> from io import BytesIO
 >>> import paddle
 >>> from paddle.nn import Linear
 >>> paddle.disable_static()

 >>> linear = Linear(5, 10)
 >>> state_dict = linear.state_dict()
 >>> byio = BytesIO()
 >>> paddle.save(state_dict, byio)
 >>> paddle.seed(2023)
 >>> tensor = paddle.randn([2, 3], dtype='float32')
 >>> paddle.save(tensor, byio)