UtilBase

class paddle.distributed.fleet. UtilBase [源代码]

分布式训练工具类,主要提供集合通信、文件系统操作等接口。

方法

all_reduce(input, mode="sum", comm_world="worker")

在指定的通信集合间进行归约操作,并将归约结果返回给集合中每个实例。

参数

  • input (list|tuple|numpy.array) – 归约操作的输入。

  • mode (str) - 归约操作的模式,包含求和,取最大值和取最小值,默认为求和归约。

  • comm_world (str) - 归约操作的通信集合,包含:server 集合(server),worker 集合(worker)及所有节点集合(all),默认为 worker 集合。

返回

Numpy.array|None:一个和``input``形状一致的 numpy 数组或 None。

代码示例

>>> # Save the following code in `train.py` , and then execute the command `fleetrun --server_num 2 --worker_num 2 train.py` .
>>> import paddle.distributed.fleet as fleet
>>> from paddle.distributed.fleet import PaddleCloudRoleMaker
>>> import sys
>>> import numpy as np
>>> import os

>>> os.environ["PADDLE_WITH_GLOO"] = "2"

>>> def train():
...     role = PaddleCloudRoleMaker(
...         is_collective=False,
...         init_gloo=True,
...         path="./tmp_gloo")
...     fleet.init(role)
...
...     if fleet.is_server():
...         input = np.array([1, 2])
...         output = fleet.util.all_reduce(input, "sum", "server")
...         print(output) # [2, 4]
...     elif fleet.is_worker():
...         input = np.array([3, 4])
...         output = fleet.util.all_reduce(input, "sum", "worker")
...         print(output) # [6, 8]
...     output = fleet.util.all_reduce(input, "sum", "all")
...     print(output) # [8, 12]

>>> if __name__ == "__main__":
...     train()

barrier(comm_world="worker")

在指定的通信集合间进行阻塞操作,以实现集合间进度同步。

参数

  • comm_world (str) - 阻塞操作的通信集合,包含:server 集合(server),worker 集合(worker)及所有节点集合(all),默认为 worker 集合。

代码示例

>>> # Save the following code in `train.py` , and then execute the command `fleetrun --server_num 2 --worker_num 2 train.py` .
>>> import paddle.distributed.fleet as fleet
>>> from paddle.distributed.fleet import PaddleCloudRoleMaker
>>> import sys
>>> import os

>>> os.environ["PADDLE_WITH_GLOO"] = "2"

>>> def train():
...     role = PaddleCloudRoleMaker(
...         is_collective=False,
...         init_gloo=True,
...         path="./tmp_gloo")
...     fleet.init(role)
...
...     if fleet.is_server():
...         fleet.util.barrier("server")
...         print("all server arrive here") # all server arrive here
...     elif fleet.is_worker():
...         fleet.util.barrier("worker")
...         print("all server arrive here") # all server arrive here
...     fleet.util.barrier("all")
...     print("all servers and workers arrive here") #all servers and workers arrive here

>>> if __name__ == "__main__":
...     train()

all_gather(input, comm_world="worker")

在指定的通信集合间进行聚合操作,并将聚合的结果返回给集合中每个实例。

参数

  • input (int|float) - 聚合操作的输入。

  • comm_world (str) - 聚合操作的通信集合,包含:server 集合(server),worker 集合(worker)及所有节点集合(all),默认为 worker 集合。

返回

  • output (List): List 格式的聚合结果。

代码示例

>>> # Save the following code in `train.py` , and then execute the command `fleetrun --server_num 2 --worker_num 2 train.py` .
>>> import paddle.distributed.fleet as fleet
>>> from paddle.distributed.fleet import PaddleCloudRoleMaker
>>> import sys
>>> import os

>>> os.environ["PADDLE_WITH_GLOO"] = "2"

>>> def train():
...     role = PaddleCloudRoleMaker(
...         is_collective=False,
...         init_gloo=True,
...         path="./tmp_gloo")
...     fleet.init(role)
...
...     if fleet.is_server():
...         input = fleet.server_index()
...         output = fleet.util.all_gather(input, "server")
...         print(output) # [0, 1]
...     elif fleet.is_worker():
...         input = fleet.worker_index()
...         output = fleet.util.all_gather(input, "worker")
...         print(output) # [0, 1]
...     output = fleet.util.all_gather(input, "all")
...     print(output) # [0, 1, 0, 1]

>>> if __name__ == "__main__":
...     train()

get_file_shard(files)

在数据并行的分布式训练中,获取属于当前训练节点的文件列表。

示例 1:原始所有文件列表 `files` = [a, b, c ,d, e],训练节点个数 `trainer_num` = 2,那么属于零号节点的训练文件为[a, b, c],属于 1 号节点的训练文件为[d, e]。
示例 2:原始所有文件列表 `files` = [a, b],训练节点个数 `trainer_num` = 3,那么属于零号节点的训练文件为[a],属于 1 号节点的训练文件为[b],属于 2 号节点的训练文件为[]。

参数

  • files (List):原始所有文件列表。

返回

  • List:属于当前训练节点的文件列表。

代码示例

>>> import paddle.distributed.fleet as fleet
>>> from paddle.distributed.fleet import UserDefinedRoleMaker

>>> role = UserDefinedRoleMaker(
...     is_collective=False,
...     init_gloo=False,
...     current_id=0,
...     role=fleet.Role.WORKER,
...     worker_endpoints=["127.0.0.1:6003", "127.0.0.1:6004"],
...     server_endpoints=["127.0.0.1:6001", "127.0.0.1:6002"])
>>> fleet.init(role)

>>> files = fleet.util.get_file_shard(["file1", "file2", "file3"])
>>> print(files)
["file1", "file2"]