no_grad¶
创建一个上下文来禁用动态图梯度计算。在此模式下,每次计算的结果都将具有 stop_gradient=True。
也可以用作一个装饰器(需要创建实例对象作为装饰器)。
代码示例¶
>>> import numpy as np
>>> import paddle
>>> # use as generator
>>> data = np.array([[2, 3], [4, 5]]).astype('float32')
>>> l0 = paddle.nn.Linear(2, 2) # l0.weight.gradient() is None
>>> l1 = paddle.nn.Linear(2, 2)
>>> with paddle.no_grad():
... # l1.weight.stop_gradient is False
... tmp = l1.weight * 2 # tmp.stop_gradient is True
>>> x = paddle.to_tensor(data)
>>> y = l0(x) + tmp
>>> o = l1(y)
>>> o.backward()
>>> print(tmp.gradient() is None)
True
>>> print(l0.weight.gradient() is None)
False
>>> # use as decorator
>>> @paddle.no_grad()
>>> def test_layer():
... inp = np.ones([3, 1024], dtype='float32')
... t = paddle.to_tensor(inp)
... linear1 = paddle.nn.Linear(1024, 4, bias_attr=False)
... linear2 = paddle.nn.Linear(4, 4)
... ret = linear1(t)
... dy_ret = linear2(ret)
...
>>> test_layer()