AdaptiveMaxPool3D¶
根据输入 x , output_size 等参数对一个输入 Tensor 计算 3D 的自适应最大池化。输入和输出都是 5-D Tensor, 默认是以 NCDHW 格式表示的,其中 N 是 batch size, C 是通道数,D , H , W 分别是输入特征的深度,高度,宽度。
计算公式如下:
\[ \begin{align}\begin{aligned}dstart &= floor(i * D_{in} / D_{out})\\dend &= ceil((i + 1) * D_{in} / D_{out})\\hstart &= floor(j * H_{in} / H_{out})\\hend &= ceil((j + 1) * H_{in} / H_{out})\\wstart &= floor(k * W_{in} / W_{out})\\wend &= ceil((k + 1) * W_{in} / W_{out})\\Output(i ,j, k) &= max(Input[dstart:dend, hstart:hend, wstart:wend])\end{aligned}\end{align} \]
参数¶
output_size (int|list|tuple):算子输出特征图的高宽长大小,其数据类型为 int,list 或 tuple。
return_mask (bool,可选):如果设置为 True,则会与输出一起返回最大值的索引,默认为 False。
name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。
形状¶
x (Tensor):默认形状为(批大小,通道数,输出特征深度,高度,宽度),即 NCDHW 格式的 5-D Tensor。其数据类型为 float32 或者 float64。
output (Tensor):默认形状为(批大小,通道数,输出特征深度,高度,宽度),即 NCDHW 格式的 5-D Tensor。其数据类型与输入 x 相同。
返回¶
计算 AdaptiveMaxPool3D 的可调用对象
代码示例¶
>>> # adaptive max pool3d
>>> # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
>>> # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
>>> # of input data into l * m * n grids averagely and performs poolings in each
>>> # grid to get output.
>>> # adaptive max pool performs calculations as follow:
>>> #
>>> # for i in range(l):
>>> # for j in range(m):
>>> # for k in range(n):
>>> # dstart = floor(i * D / l)
>>> # dend = ceil((i + 1) * D / l)
>>> # hstart = floor(j * H / m)
>>> # hend = ceil((j + 1) * H / m)
>>> # wstart = floor(k * W / n)
>>> # wend = ceil((k + 1) * W / n)
>>> # output[:, :, i, j, k] =
>>> # max(input[:, :, dstart:dend, hstart: hend, wstart: wend])
>>> import paddle
>>> x = paddle.rand([2, 3, 8, 32, 32])
>>> pool = paddle.nn.AdaptiveMaxPool3D(output_size=4)
>>> out = pool(x)
>>> print(out.shape)
[2, 3, 4, 4, 4]
>>> pool = paddle.nn.AdaptiveMaxPool3D(output_size=3, return_mask=True)
>>> out, indices = pool(x)
>>> print(out.shape)
[2, 3, 3, 3, 3]
>>> print(indices.shape)
[2, 3, 3, 3, 3]