点云处理:实现PointNet点云分割

作者信息: lzzzzzm

创建日期: 2022年10月26日

摘要: 本示例在于演示如何基于 PaddlePaddle 2.3.2实现PointNet在ShapeNet数据集上进行点云分割。

1、简要介绍

点云是一种不同于图片的数据存储结构,其特有的无序性,使其在利用深度网络处理时,需要进行特殊的处理。常见的处理方法有将点云处理成体素后,以某种方式将体素转换为图片后进行处理,但这种方法往往伴随着计算量大等缺点。PointNet系列的模型在模型的设计上,考虑到了点云的无序性特点,使其可以直接对点云数据处理,大大降低了计算量。PointNet系列的模型以简单的结构,同时兼顾了点云分类,零件分割到语义解析任务。

本项目基于PointNet实现对物体零件分割功能

2、环境设置

import os
import tqdm
import random
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import  warnings
warnings.filterwarnings("ignore", module="matplotlib")    
from mpl_toolkits.mplot3d import Axes3D

# paddle相关库
import paddle
from paddle.io import Dataset
import paddle.nn.functional as F
from paddle.nn import Conv2D, MaxPool2D, Linear, BatchNorm, Dropout, ReLU, Softmax, Sequential

# 查看paddle版本
print('本项目使用paddle版本:{}'.format(paddle.__version__))
本项目使用paddle版本:2.3.2

3、数据集

ShapeNet 数据集是一项持续的工作,旨在建立一个带有丰富注释的大规模 3D 形状数据集。形状网核心是完整形状网数据集的子集,具有干净的单个3D模型和手动验证的类别和对齐注释。它涵盖了55个常见的对象类别,约有51,300个独特的3D模型。

对于此示例,我们使用 PASCAL 3D+ 的 12 个对象类别之一,以飞机的零件分割为例,该类别作为 ShapenetCore 数据集的一部分包含在内。

完整的数据集下载地址:https://shapenet.cs.stanford.edu/iccv17/

# 解压数据集,并放到dataset这个文件夹下
!mkdir dataset
!unzip -q data/data174089/shapenet.zip -d dataset/

3.1点云数据可视化

点云数据的获取方式,一般都是使用深度相机或者雷达,其存储的形式一般为一个(N,4)的向量,其中N代表着这次采集的点云数量,4代表着其中每个点在三维的坐标x,y,z和反射强度r,但在本次的数据集中,点云的存储方式为(N,3),即不包括点云的反射强度r。

而label的存储方式则是为一个N维的向量,代表每个点具体的类别

下面,我们通过读取点云的数据和其label,对我们需要处理的数据,有一个大致的认识。

# 可视化使用的颜色和对应label的名字
COLORS = [' ', 'b', 'r', 'g', 'pink']
label_map = ['', 'body', 'wing', 'tail', 'engine']

def visualize_data(point_cloud, label, title):
    df = pd.DataFrame(
        data={
            "x": point_cloud[:, 0],
            "y": point_cloud[:, 1],
            "z": point_cloud[:, 2],
            "label": label,
        }
    )
    fig = plt.figure(figsize=(15, 10))
    ax = plt.axes(projection="3d")
    ax.scatter(df["x"], df["y"], df["z"])
    for i in range(label.min(), label.max()+1):
        c_df = df[df['label'] == i]
        ax.scatter(c_df["x"], c_df["y"], c_df["z"], label=label_map[i], alpha=0.5, c=COLORS[i])
    ax.legend()
    plt.title(title)
    plt.show()

show_point_cloud_path = 'dataset/shapenet/train_data/Airplane/000043.pts'
show_label_path = 'dataset/shapenet/train_label/Airplane/000043.seg'
# 读取点云文件
point_cloud = np.loadtxt(show_point_cloud_path)
label = np.loadtxt(show_label_path).astype('int')
visualize_data(point_cloud, label, 'label')
print('point cloud shape:{}'.format(point_cloud.shape))
print('label shape:{}'.format(label.shape))

png

point cloud shape:(2593, 3)
label shape:(2593,)

3.2数据获取与预处理

根据上面的可视化分析,我们可以知道,每个数据中点云N的数量是不同的,这不利于我们进行后续的处理,所以这里对数据集中的点云进行了随机采样,使每个点云的数量一致,此外,我们也将点云的坐标进行了正则化操作,最后将处理好的点云存储在内存中,方便后续dataset的构建。

PS:此数据集中不仅包含Airplane类别,还包括Bag,Cap,Car和Chair类别,有兴趣可以自己修改数据集路径进行使用。

data_path = 'dataset/shapenet/train_data/Airplane'
label_path = 'dataset/shapenet/train_label/Airplane'
# 采样点
NUM_SAMPLE_POINTS = 1024 
# 存储点云与label
point_clouds = []
point_clouds_labels = []

file_list = os.listdir(data_path)
for file_name in tqdm.tqdm(file_list):
    # 获取label和data的地址
    label_name = file_name.replace('.pts', '.seg')
    point_cloud_file_path = os.path.join(data_path, file_name)
    label_file_path = os.path.join(label_path, label_name)
    # 读取label和data
    point_cloud = np.loadtxt(point_cloud_file_path)
    label = np.loadtxt(label_file_path).astype('int')
    # 如果本身的点少于需要采样的点,则直接去除
    if len(point_cloud) < NUM_SAMPLE_POINTS:
        continue
    # 采样
    num_points = len(point_cloud)
    # 确定随机采样的index
    sampled_indices = random.sample(list(range(num_points)), NUM_SAMPLE_POINTS)
    # 点云采样
    sampled_point_cloud = np.array([point_cloud[i] for i in sampled_indices])
    # label采样
    sampled_label_cloud = np.array([label[i] for i in sampled_indices])
    # 正则化
    norm_point_cloud = sampled_point_cloud - np.mean(sampled_point_cloud, axis=0)
    norm_point_cloud /= np.max(np.linalg.norm(norm_point_cloud, axis=1))
    # 存储
    point_clouds.append(norm_point_cloud)
    point_clouds_labels.append(sampled_label_cloud)
        
100%|██████████| 1958/1958 [00:55<00:00, 35.41it/s]

可视化看一下采样后的点云和之前的区别。

visualize_data(point_clouds[0], point_clouds_labels[0], 'label')

png

3.3数据集定义

在Paddle中,数据集的定义只需要完成以下四步即可:

  • paddle.io.Dataset的继承

  • 构造函数的实现,主要完成一些初始化

  • __gtitem__方法的实现,即定义index时,可以返回对应的单条数据,包括训练数据和对应的标签

  • __len__方法的实现,即获取数据的大小

此外,这里还对数据集进行了训练集和验证集的划分,划分比例为验证集占总体的20%,并将定义好的数据集,通过paddle.io.DataLoader进行迭代器的封装,方便训练过程数据的读取操作。

class MyDataset(Dataset):
    """
    步骤一:继承paddle.io.Dataset类
    """
    def __init__(self, data, label):
        """
        步骤二:实现构造函数,定义数据集大小
        """
        super(MyDataset, self).__init__()
        self.data = data
        self.label = label

    def __getitem__(self, index):
        """
        步骤三:实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据,对应的标签)
        """
        data = self.data[index]
        # 减1是因为原始label中是从1开始算类别数的
        label = self.label[index]-1
        data = np.reshape(data, (1, 1024, 3))

        return data, label

    def __len__(self):
        """
        步骤四:实现__len__方法,返回数据集总数目
        """
        return len(self.data)

# 数据集划分
VAL_SPLIT = 0.2
split_index = int(len(point_clouds) * (1 - VAL_SPLIT))
train_point_clouds = point_clouds[:split_index]
train_label_cloud = point_clouds_labels[:split_index]
total_training_examples = len(train_point_clouds)
val_point_clouds = point_clouds[split_index:]
val_label_cloud = point_clouds_labels[split_index:]
print("Num train point clouds:", len(train_point_clouds))
print("Num train point cloud labels:", len(train_label_cloud))
print("Num val point clouds:", len(val_point_clouds))
print("Num val point cloud labels:", len(val_label_cloud))

# 测试定义的数据集
train_dataset = MyDataset(train_point_clouds, train_label_cloud)
val_dataset = MyDataset(val_point_clouds, val_label_cloud)

print('=============custom dataset test=============')
for data, label in train_dataset:
    print('data shape:{} \nlabel shape:{}'.format(data.shape, label.shape))
    break

# Batch_size 大小
BATCH_SIZE = 64
# # 数据加载
train_loader = paddle.io.DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
val_loader = paddle.io.DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False)
Num train point clouds: 1566
Num train point cloud labels: 1566
Num val point clouds: 392
Num val point cloud labels: 392
=============custom dataset test=============
data shape:(1, 1024, 3) 
label shape:(1024,)

4、模型组网

在模型组网前,先对本次项目使用的PointNet网络做一个简单的的介绍。

4.1 PointNet介绍

https://ai-studio-static-online.cdn.bcebos.com/78852aff0dcc45b78ca61500a2ccf17eb86c5a95eb684f0e86f217abed9955d2

PointNet网络的设计思路,主要解决以下三个问题:点云的无序性,点云之间的交互性和点云的变换不变性。

  • **点云的无序性:**对称函数(symmetry function)的应用,如加法、乘法和取最大值函数等,在PointNet则是采用了maxpooling(最大值汇聚)的方法

  • 点云的交互性: 在分割网络的分支里,可以看到其将某一层的信息和经过maxpooling得到的全局信息进行concate来达到全局和局部信息的交互

  • 点云的变换不变性: 在点云中,不论怎么旋转应该都不会改变其属性。在此前有人设计变换矩阵,以数据增强的方法来解决这个问题。而作者这里直接将这个变换矩阵的学习也融入到网络中,设计了input transform结构。

另外,由于网络最终要使用maxpooling来进行汇聚特征,而原始的点云是(N,3)的特征,也即只有3维特征,所以作者利用了MLP来进行升维后再进行汇聚的操作。

在分割网络里,作者通过concate全局特征和局部特征,构造一个语义特征更强的特征形式,后面就是常规的通过MLP网络进行降维后生成预测点云。

更加详细的细节,可以查看原论文和下面的代码:论文地址

其中代码中的网络定义,对应网络细节如下:

  • input_transform_net+input_fc:对应T-Net,后续reshape到3x3做为变换矩阵和输入进行变换

  • mlp:对应升维的MLP层

  • seg_net:对应Segmentation Network中一系列的MLP层

其中代码中的MLP层,均使用了1x1的卷积层来进行代替。

4.2 Paddle模型组网

Paddle中的组网和torch中无大致区别,继承nn.Layer后,重写前向传播forward即可

class PointNet(paddle.nn.Layer):
    def __init__(self, name_scope='PointNet_', num_classes=4, num_point=1024):
        super(PointNet, self).__init__()
        self.num_point = num_point
        self.input_transform_net = Sequential(
            Conv2D(1, 64, (1, 3)),
            BatchNorm(64),
            ReLU(),
            Conv2D(64, 128, (1, 1)),
            BatchNorm(128),
            ReLU(),
            Conv2D(128, 1024, (1, 1)),
            BatchNorm(1024),
            ReLU(),
            MaxPool2D((num_point, 1))
        )
        self.input_fc = Sequential(
            Linear(1024, 512),
            ReLU(),
            Linear(512, 256),
            ReLU(),
            Linear(256, 9, 
                weight_attr=paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Assign(paddle.zeros((256, 9)))),
                bias_attr=paddle.framework.ParamAttr(initializer=paddle.nn.initializer.Assign(paddle.reshape(paddle.eye(3), [-1])))
            )
        )
        self.mlp_1 = Sequential(
            Conv2D(1, 64, (1, 3)),
            BatchNorm(64),
            ReLU(),
            Conv2D(64, 64,(1, 1)),
            BatchNorm(64),
            ReLU(),
        )
        self.feature_transform_net = Sequential(
            Conv2D(64, 64, (1, 1)),
            BatchNorm(64),
            ReLU(),
            Conv2D(64, 128, (1, 1)),
            BatchNorm(128),
            ReLU(),
            Conv2D(128, 1024, (1, 1)),
            BatchNorm(1024),
            ReLU(),

            MaxPool2D((num_point, 1))
        )
        self.feature_fc = Sequential(
            Linear(1024, 512),
            ReLU(),
            Linear(512, 256),
            ReLU(),
            Linear(256, 64*64)
        )
        self.mlp_2 = Sequential(
            Conv2D(64, 64, (1, 1)),
            BatchNorm(64),
            ReLU(),
            Conv2D(64, 128,(1, 1)),
            BatchNorm(128),
            ReLU(),
            Conv2D(128, 1024,(1, 1)),
            BatchNorm(1024),
            ReLU(),
        )
        self.seg_net = Sequential(
            Conv2D(1088, 512, (1, 1)),
            BatchNorm(512),
            ReLU(),
            Conv2D(512, 256, (1, 1)),
            BatchNorm(256),
            ReLU(),
            Conv2D(256, 128, (1, 1)),
            BatchNorm(128),
            ReLU(),
            Conv2D(128, 128, (1, 1)),
            BatchNorm(128),
            ReLU(),
            Conv2D(128, num_classes, (1, 1)),
            Softmax(axis=1)
        )
    def forward(self, inputs):
        batchsize = inputs.shape[0]

        t_net = self.input_transform_net(inputs)
        t_net = paddle.squeeze(t_net)
        t_net = self.input_fc(t_net)
        t_net = paddle.reshape(t_net, [batchsize, 3, 3])
      
        x = paddle.reshape(inputs, shape=(batchsize, 1024, 3))
        x = paddle.matmul(x, t_net)
        x = paddle.unsqueeze(x, axis=1)
        x = self.mlp_1(x)

        t_net = self.feature_transform_net(x)
        t_net = paddle.squeeze(t_net)
        t_net = self.feature_fc(t_net)
        t_net = paddle.reshape(t_net, [batchsize, 64, 64])

        x = paddle.reshape(x, shape=(batchsize, 64, 1024))
        x = paddle.transpose(x, (0, 2, 1))
        x = paddle.matmul(x, t_net)
        x = paddle.transpose(x, (0, 2, 1))
        x = paddle.unsqueeze(x, axis=-1)
        point_feat = x
        x = self.mlp_2(x)
        x = paddle.max(x, axis=2)

        global_feat_expand = paddle.tile(paddle.unsqueeze(x, axis=1), [1, self.num_point, 1, 1])        
        x = paddle.concat([point_feat, global_feat_expand], axis=1)
        x = self.seg_net(x)
        x = paddle.squeeze(x, axis=-1)
        x = paddle.transpose(x, (0, 2, 1))

        return x

4.3 模型可视化

pointnet = PointNet()
paddle.summary(pointnet, (64, 1, 1024, 3))
----------------------------------------------------------------------------
 Layer (type)        Input Shape          Output Shape         Param #    
============================================================================
   Conv2D-17     [[64, 1, 1024, 3]]    [64, 64, 1024, 1]         256      
 BatchNorm-16    [[64, 64, 1024, 1]]   [64, 64, 1024, 1]         256      
    ReLU-20      [[64, 64, 1024, 1]]   [64, 64, 1024, 1]          0       
   Conv2D-18     [[64, 64, 1024, 1]]   [64, 128, 1024, 1]       8,320     
 BatchNorm-17   [[64, 128, 1024, 1]]   [64, 128, 1024, 1]        512      
    ReLU-21     [[64, 128, 1024, 1]]   [64, 128, 1024, 1]         0       
   Conv2D-19    [[64, 128, 1024, 1]]  [64, 1024, 1024, 1]      132,096    
 BatchNorm-18   [[64, 1024, 1024, 1]] [64, 1024, 1024, 1]       4,096     
    ReLU-22     [[64, 1024, 1024, 1]] [64, 1024, 1024, 1]         0       
  MaxPool2D-3   [[64, 1024, 1024, 1]]   [64, 1024, 1, 1]          0       
   Linear-7         [[64, 1024]]           [64, 512]           524,800    
    ReLU-23          [[64, 512]]           [64, 512]              0       
   Linear-8          [[64, 512]]           [64, 256]           131,328    
    ReLU-24          [[64, 256]]           [64, 256]              0       
   Linear-9          [[64, 256]]            [64, 9]             2,313     
   Conv2D-20     [[64, 1, 1024, 3]]    [64, 64, 1024, 1]         256      
 BatchNorm-19    [[64, 64, 1024, 1]]   [64, 64, 1024, 1]         256      
    ReLU-25      [[64, 64, 1024, 1]]   [64, 64, 1024, 1]          0       
   Conv2D-21     [[64, 64, 1024, 1]]   [64, 64, 1024, 1]        4,160     
 BatchNorm-20    [[64, 64, 1024, 1]]   [64, 64, 1024, 1]         256      
    ReLU-26      [[64, 64, 1024, 1]]   [64, 64, 1024, 1]          0       
   Conv2D-22     [[64, 64, 1024, 1]]   [64, 64, 1024, 1]        4,160     
 BatchNorm-21    [[64, 64, 1024, 1]]   [64, 64, 1024, 1]         256      
    ReLU-27      [[64, 64, 1024, 1]]   [64, 64, 1024, 1]          0       
   Conv2D-23     [[64, 64, 1024, 1]]   [64, 128, 1024, 1]       8,320     
 BatchNorm-22   [[64, 128, 1024, 1]]   [64, 128, 1024, 1]        512      
    ReLU-28     [[64, 128, 1024, 1]]   [64, 128, 1024, 1]         0       
   Conv2D-24    [[64, 128, 1024, 1]]  [64, 1024, 1024, 1]      132,096    
 BatchNorm-23   [[64, 1024, 1024, 1]] [64, 1024, 1024, 1]       4,096     
    ReLU-29     [[64, 1024, 1024, 1]] [64, 1024, 1024, 1]         0       
  MaxPool2D-4   [[64, 1024, 1024, 1]]   [64, 1024, 1, 1]          0       
   Linear-10        [[64, 1024]]           [64, 512]           524,800    
    ReLU-30          [[64, 512]]           [64, 512]              0       
   Linear-11         [[64, 512]]           [64, 256]           131,328    
    ReLU-31          [[64, 256]]           [64, 256]              0       
   Linear-12         [[64, 256]]           [64, 4096]         1,052,672   
   Conv2D-25     [[64, 64, 1024, 1]]   [64, 64, 1024, 1]        4,160     
 BatchNorm-24    [[64, 64, 1024, 1]]   [64, 64, 1024, 1]         256      
    ReLU-32      [[64, 64, 1024, 1]]   [64, 64, 1024, 1]          0       
   Conv2D-26     [[64, 64, 1024, 1]]   [64, 128, 1024, 1]       8,320     
 BatchNorm-25   [[64, 128, 1024, 1]]   [64, 128, 1024, 1]        512      
    ReLU-33     [[64, 128, 1024, 1]]   [64, 128, 1024, 1]         0       
   Conv2D-27    [[64, 128, 1024, 1]]  [64, 1024, 1024, 1]      132,096    
 BatchNorm-26   [[64, 1024, 1024, 1]] [64, 1024, 1024, 1]       4,096     
    ReLU-34     [[64, 1024, 1024, 1]] [64, 1024, 1024, 1]         0       
   Conv2D-28    [[64, 1088, 1024, 1]]  [64, 512, 1024, 1]      557,568    
 BatchNorm-27   [[64, 512, 1024, 1]]   [64, 512, 1024, 1]       2,048     
    ReLU-35     [[64, 512, 1024, 1]]   [64, 512, 1024, 1]         0       
   Conv2D-29    [[64, 512, 1024, 1]]   [64, 256, 1024, 1]      131,328    
 BatchNorm-28   [[64, 256, 1024, 1]]   [64, 256, 1024, 1]       1,024     
    ReLU-36     [[64, 256, 1024, 1]]   [64, 256, 1024, 1]         0       
   Conv2D-30    [[64, 256, 1024, 1]]   [64, 128, 1024, 1]      32,896     
 BatchNorm-29   [[64, 128, 1024, 1]]   [64, 128, 1024, 1]        512      
    ReLU-37     [[64, 128, 1024, 1]]   [64, 128, 1024, 1]         0       
   Conv2D-31    [[64, 128, 1024, 1]]   [64, 128, 1024, 1]      16,512     
 BatchNorm-30   [[64, 128, 1024, 1]]   [64, 128, 1024, 1]        512      
    ReLU-38     [[64, 128, 1024, 1]]   [64, 128, 1024, 1]         0       
   Conv2D-32    [[64, 128, 1024, 1]]    [64, 4, 1024, 1]         516      
   Softmax-2     [[64, 4, 1024, 1]]     [64, 4, 1024, 1]          0       
============================================================================
Total params: 3,559,501
Trainable params: 3,540,301
Non-trainable params: 19,200
----------------------------------------------------------------------------
Input size (MB): 0.75
Forward/backward pass size (MB): 7208.50
Params size (MB): 13.58
Estimated Total Size (MB): 7222.83
----------------------------------------------------------------------------






{'total_params': 3559501, 'trainable_params': 3540301}

5、模型训练

模型训练中使用的参数如下:

  • 优化器:Adam,其中weight_decay=0.001

  • 损失函数:CrossEntropyLoss

  • 训练轮数:epoch_num=50

  • 保存轮数:save_interval=2

  • 模型保存地址:output_dir=’./output’

# 创建模型
model = PointNet()
model.train()
# 优化器定义
optim = paddle.optimizer.Adam(parameters=model.parameters(), weight_decay=0.001)
# 损失函数定义
loss_fn = paddle.nn.CrossEntropyLoss()
# 评价指标定义
m = paddle.metric.Accuracy()
# 训练轮数
epoch_num = 50
# 每多少个epoch保存
save_interval = 2
# 每多少个epoch验证
val_interval = 2
best_acc = 0
# 模型保存地址
output_dir = './output'
if not os.path.exists(output_dir):
    os.makedirs(output_dir)
# 训练过程
plot_acc = []
plot_loss = []
for epoch in range(epoch_num):
    total_loss = 0
    for batch_id, data in enumerate(train_loader()):
        inputs = paddle.to_tensor(data[0], dtype='float32')
        labels = paddle.to_tensor(data[1], dtype='int64')
        predicts = model(inputs)
      
        # 计算损失和反向传播
        loss = loss_fn(predicts, labels)
        total_loss = total_loss+loss.numpy()[0]
        loss.backward()
        # 计算acc
        predicts = paddle.reshape(predicts, (predicts.shape[0]*predicts.shape[1], -1))
        labels = paddle.reshape(labels, (labels.shape[0]*labels.shape[1], 1))
        correct = m.compute(predicts, labels)
        m.update(correct)
        # 优化器更新
        optim.step()
        optim.clear_grad()
    avg_loss = total_loss/batch_id
    plot_loss.append(avg_loss)
    print("epoch: {}/{}, loss is: {}, acc is:{}".format(epoch, epoch_num, avg_loss, m.accumulate()))
    m.reset()
    # 保存
    if epoch % save_interval == 0:
        model_name = str(epoch)
        paddle.save(model.state_dict(), './output/PointNet_{}.pdparams'.format(model_name))
        paddle.save(optim.state_dict(), './output/PointNet_{}.pdopt'.format(model_name))
    # 训练中途验证
    if epoch % val_interval == 0:
        model.eval()
        for batch_id, data in enumerate(val_loader()): 
            inputs = paddle.to_tensor(data[0], dtype='float32')
            labels = paddle.to_tensor(data[1], dtype='int64')
            predicts = model(inputs)
            predicts = paddle.reshape(predicts, (predicts.shape[0]*predicts.shape[1], -1))
            labels = paddle.reshape(labels, (labels.shape[0]*labels.shape[1], 1))
            correct = m.compute(predicts, labels)
            m.update(correct)
        val_acc = m.accumulate()
        plot_acc.append(val_acc)
        if val_acc > best_acc:
            best_acc = val_acc
            print("===================================val===========================================")
            print('val best epoch in:{}, best acc:{}'.format(epoch, best_acc))
            print("===================================train===========================================")
            paddle.save(model.state_dict(), './output/best_model.pdparams')
            paddle.save(optim.state_dict(), './output/best_model.pdopt')
        m.reset()
        model.train()

可视化模型训练过程

def plot_result(item, title):
    plt.figure()
    plt.xlabel("Epochs")
    plt.plot(item)
    plt.title(title, fontsize=14)
    plt.grid()
    plt.show()

plot_result(plot_acc, 'val acc')
plot_result(plot_loss, 'training loss')

png

png

6、模型预测

ckpt_path = 'output/best_model.pdparams'
para_state_dict = paddle.load(ckpt_path)
# 加载网络和参数
model = PointNet()
model.set_state_dict(para_state_dict)
model.eval()
# 加载数据集
point_cloud = point_clouds[0]
show_point_cloud = point_cloud
point_cloud = paddle.to_tensor(np.reshape(point_cloud, (1, 1, 1024, 3)), dtype='float32')
label = point_clouds_labels[0]
# 前向推理
preds = model(point_cloud)
show_pred = paddle.argmax(preds, axis=-1).numpy() + 1

可视化结果

visualize_data(show_point_cloud, show_pred[0], 'pred')
visualize_data(show_point_cloud, label, 'label')

png

png

7、总结

本项目从点云数据的分析出发,利用Paddle框架,实现了数据集构建,模型组网,训练和预测全流程开发,实现了对于点云数据的part segmentation任务