使用LeNet在MNIST数据集实现图像分类¶
作者: PaddlePaddle
日期: 2022.5
摘要: 本示例教程演示如何在MNIST数据集上用LeNet进行图像分类。
一、环境配置¶
本教程基于PaddlePaddle 2.3.0 编写,如果你的环境不是本版本,请先参考官网安装 PaddlePaddle 2.3.0。
import paddle
print(paddle.__version__)
2.3.0
二、数据加载¶
手写数字的MNIST数据集,包含60,000个用于训练的示例和10,000个用于测试的示例。这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),其值为0到1。该数据集的官方地址为:http://yann.lecun.com/exdb/mnist 。
我们使用飞桨框架自带的 paddle.vision.datasets.MNIST
完成mnist数据集的加载。
from paddle.vision.transforms import Compose, Normalize
transform = Compose([Normalize(mean=[127.5],
std=[127.5],
data_format='CHW')])
# 使用transform对数据集做归一化
print('download training data and load training data')
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
test_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
print('load finished')
取训练集中的一条数据看一下。
import numpy as np
import matplotlib.pyplot as plt
train_data0, train_label_0 = train_dataset[0][0],train_dataset[0][1]
train_data0 = train_data0.reshape([28,28])
plt.figure(figsize=(2,2))
plt.imshow(train_data0, cmap=plt.cm.binary)
print('train_data0 label is: ' + str(train_label_0))
train_data0 label is: [5]
三、组网¶
用paddle.nn下的API,如Conv2D
、MaxPool2D
、Linear
完成LeNet的构建。
import paddle
import paddle.nn.functional as F
class LeNet(paddle.nn.Layer):
def __init__(self):
super().__init__()
self.conv1 = paddle.nn.Conv2D(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2)
self.max_pool1 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)
self.conv2 = paddle.nn.Conv2D(in_channels=6, out_channels=16, kernel_size=5, stride=1)
self.max_pool2 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)
self.linear1 = paddle.nn.Linear(in_features=16*5*5, out_features=120)
self.linear2 = paddle.nn.Linear(in_features=120, out_features=84)
self.linear3 = paddle.nn.Linear(in_features=84, out_features=10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.max_pool1(x)
x = self.conv2(x)
x = F.relu(x)
x = self.max_pool2(x)
x = paddle.flatten(x, start_axis=1,stop_axis=-1)
x = self.linear1(x)
x = F.relu(x)
x = self.linear2(x)
x = F.relu(x)
x = self.linear3(x)
return x
四、方式1:基于高层API,完成模型的训练与预测¶
通过paddle提供的Model
构建实例,使用封装好的训练与测试接口,快速完成模型训练与测试。
4.1 使用 Model.fit
来训练模型¶
from paddle.metric import Accuracy
model = paddle.Model(LeNet()) # 用Model封装模型
optim = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())
# 配置模型
model.prepare(
optim,
paddle.nn.CrossEntropyLoss(),
Accuracy()
)
# 训练模型
model.fit(train_dataset,
epochs=2,
batch_size=64,
verbose=1
)
4.2 使用 Model.evaluate
来预测模型¶
model.evaluate(test_dataset, batch_size=64, verbose=1)
Eval begin...
step 157/157 [==============================] - loss: 4.2854e-04 - acc: 0.9841 - 7ms/step
Eval samples: 10000
{'loss': [0.00042853763], 'acc': 0.9841}
方式一结束¶
以上就是方式一,可以快速、高效的完成网络模型训练与预测。
五、方式2:基于基础API,完成模型的训练与预测¶
5.1 模型训练¶
组网后,开始对模型进行训练,先构建train_loader
,加载训练数据,然后定义train
函数,设置好损失函数后,按batch加载数据,完成模型的训练。
import paddle.nn.functional as F
train_loader = paddle.io.DataLoader(train_dataset, batch_size=64, shuffle=True)
# 加载训练集 batch_size 设为 64
def train(model):
model.train()
epochs = 2
optim = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())
# 用Adam作为优化函数
for epoch in range(epochs):
for batch_id, data in enumerate(train_loader()):
x_data = data[0]
y_data = data[1]
predicts = model(x_data)
loss = F.cross_entropy(predicts, y_data)
# 计算损失
acc = paddle.metric.accuracy(predicts, y_data)
loss.backward()
if batch_id % 300 == 0:
print("epoch: {}, batch_id: {}, loss is: {}, acc is: {}".format(epoch, batch_id, loss.numpy(), acc.numpy()))
optim.step()
optim.clear_grad()
model = LeNet()
train(model)
epoch: 0, batch_id: 0, loss is: [2.9878871], acc is: [0.140625]
epoch: 0, batch_id: 300, loss is: [0.22775462], acc is: [0.921875]
epoch: 0, batch_id: 600, loss is: [0.06251755], acc is: [0.984375]
epoch: 0, batch_id: 900, loss is: [0.1097075], acc is: [0.96875]
epoch: 1, batch_id: 0, loss is: [0.04311676], acc is: [0.984375]
epoch: 1, batch_id: 300, loss is: [0.00150577], acc is: [1.]
epoch: 1, batch_id: 600, loss is: [0.08764459], acc is: [0.96875]
epoch: 1, batch_id: 900, loss is: [0.14419323], acc is: [0.9375]
5.2 模型验证¶
训练完成后,需要验证模型的效果,此时,加载测试数据集,然后用训练好的模对测试集进行预测,计算损失与精度。
test_loader = paddle.io.DataLoader(test_dataset, places=paddle.CPUPlace(), batch_size=64)
# 加载测试数据集
def test(model):
model.eval()
batch_size = 64
for batch_id, data in enumerate(test_loader()):
x_data = data[0]
y_data = data[1]
predicts = model(x_data)
# 获取预测结果
loss = F.cross_entropy(predicts, y_data)
acc = paddle.metric.accuracy(predicts, y_data)
if batch_id % 20 == 0:
print("batch_id: {}, loss is: {}, acc is: {}".format(batch_id, loss.numpy(), acc.numpy()))
test(model)
batch_id: 0, loss is: [0.01201783], acc is: [1.]
batch_id: 20, loss is: [0.09013407], acc is: [0.984375]
batch_id: 40, loss is: [0.07025866], acc is: [0.96875]
batch_id: 60, loss is: [0.08602518], acc is: [0.984375]
batch_id: 80, loss is: [0.00779913], acc is: [1.]
batch_id: 100, loss is: [0.00508764], acc is: [1.]
batch_id: 120, loss is: [0.00401443], acc is: [1.]
batch_id: 140, loss is: [0.03930391], acc is: [0.96875]
方式二结束¶
以上就是方式二,通过底层API,可以清楚的看到训练和测试中的每一步过程。但是,这种方式比较复杂。因此,我们提供了训练方式一,使用高层API来完成模型的训练与预测。对比底层API,高层API能够更加快速、高效的完成模型的训练与测试。
六、总结¶
以上就是用LeNet对手写数字数据及MNIST进行分类。本示例提供了两种训练模型的方式,一种可以快速完成模型的组建与预测,非常适合新手用户上手。另一种则需要多个步骤来完成模型的训练,适合进阶用户使用。