AdaptiveAvgPool3D

paddle.nn. AdaptiveAvgPool3D ( output_size, data_format='NCDHW', name=None ) [源代码]

根据输入 x , output_size 等参数对一个输入 Tensor 计算 3D 的自适应平均池化。输入和输出都是 5-D Tensor, 默认是以 NCDHW 格式表示的,其中 N 是 batch size, C 是通道数,D 是特征图长度,H 是输入特征的高度,W 是输入特征的宽度。

计算公式如下:

\[ \begin{align}\begin{aligned}dstart &= floor(i * D_{in} / D_{out})\\dend &= ceil((i + 1) * D_{in} / D_{out})\\hstart &= floor(j * H_{in} / H_{out})\\hend &= ceil((j + 1) * H_{in} / H_{out})\\wstart &= floor(k * W_{in} / W_{out})\\wend &= ceil((k + 1) * W_{in} / W_{out})\\Output(i ,j, k) &= \frac{\sum Input[dstart:dend, hstart:hend, wstart:wend]}{(dend - dstart) * (hend - hstart) * (wend - wstart)}\end{aligned}\end{align} \]

参数

  • output_size (int|list|tuple):算子输出特征图的尺寸,如果其是 list 或 turple 类型的数值,必须包含三个元素,D,H 和 W。D,H 和 W 既可以是 int 类型值也可以是 None,None 表示与输入特征尺寸相同。

  • data_format (str,可选):输入和输出的数据格式,可以是"NCDHW"和"NDHWC"。N 是批尺寸,C 是通道数,D 是特征长度,H 是特征高度,W 是特征宽度。默认值:"NCDHW"。

  • name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。

形状

  • x (Tensor):默认形状为(批大小,通道数,长度,高度,宽度),即 NCDHW 格式的 5-D Tensor。其数据类型为 float16, float32, float64, int32 或 int64。

  • output (Tensor):默认形状为(批大小,通道数,输出特征长度,输出特征高度,输出特征宽度),即 NCDHW 格式的 5-D Tensor。其数据类型与输入相同。

返回

计算 AdaptiveAvgPool3D 的可调用对象

代码示例

>>> # adaptive avg pool3d
>>> # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
>>> # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
>>> # of input data into l * m * n grids averagely and performs poolings in each
>>> # grid to get output.
>>> # adaptive avg pool performs calculations as follow:
>>> #
>>> #     for i in range(l):
>>> #         for j in range(m):
>>> #             for k in range(n):
>>> #                 dstart = floor(i * D / l)
>>> #                 dend = ceil((i + 1) * D / l)
>>> #                 hstart = floor(j * H / m)
>>> #                 hend = ceil((j + 1) * H / m)
>>> #                 wstart = floor(k * W / n)
>>> #                 wend = ceil((k + 1) * W / n)
>>> #                 output[:, :, i, j, k] =
>>> #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
>>> import paddle

>>> x = paddle.rand([2, 3, 8, 32, 32])

>>> adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(output_size=3)
>>> pool_out = adaptive_avg_pool(x = x)
>>> print(pool_out.shape)
[2, 3, 3, 3, 3]