Loading [Contrib]/a11y/accessibility-menu.js
You need to enable JavaScript to run this app.
\u200E
中
|
EN
···
论坛
···
GitHub
···
···
安装
···
教程
···
文档
···
模型库
···
产品全景
···
应用案例
···
活动日历
···
开发者社区
···
资讯
···
2.6
···
安装指南
···
使用指南
···
应用实践
···
API 文档
···
贡献指南
···
常见问题与解答
···
2.6.0 Release Note
···
中文(简)
paddle
paddle.amp
paddle.audio
paddle.autograd
paddle.callbacks
paddle.device
paddle.distributed
paddle.distribution
paddle.fft
paddle.fluid
paddle.geometric
paddle.hub
paddle.incubate
paddle.io
paddle.jit
paddle.linalg
paddle.metric
paddle.nn
Overview
AdaptiveAvgPool1D
AdaptiveAvgPool2D
AdaptiveAvgPool3D
AdaptiveMaxPool1D
AdaptiveMaxPool2D
AdaptiveMaxPool3D
AlphaDropout
AvgPool1D
AvgPool2D
AvgPool3D
BatchNorm
BatchNorm1D
BatchNorm2D
BatchNorm3D
BCELoss
BCEWithLogitsLoss
BeamSearchDecoder
Bilinear
BiRNN
CELU
ChannelShuffle
ClipGradByGlobalNorm
ClipGradByNorm
ClipGradByValue
Conv1D
Conv1DTranspose
Conv2D
Conv2DTranspose
Conv3D
Conv3DTranspose
CosineEmbeddingLoss
CosineSimilarity
CrossEntropyLoss
CTCLoss
Dropout
Dropout2D
Dropout3D
dynamic_decode
ELU
Embedding
Flatten
Fold
functional
adaptive_avg_pool1d
adaptive_avg_pool2d
adaptive_avg_pool3d
adaptive_max_pool1d
adaptive_max_pool2d
adaptive_max_pool3d
affine_grid
alpha_dropout
avg_pool1d
avg_pool2d
avg_pool3d
batch_norm
bilinear
binary_cross_entropy
binary_cross_entropy_with_logits
celu
channel_shuffle
class_center_sample
conv1d
conv1d_transpose
conv2d
conv2d_transpose
conv3d
conv3d_transpose
cosine_embedding_loss
cosine_similarity
cross_entropy
ctc_loss
dice_loss
dropout
dropout2d
dropout3d
elu
elu_
embedding
fold
gather_tree
gaussian_nll_loss
gelu
glu
grid_sample
gumbel_softmax
hardshrink
hardsigmoid
hardswish
hardtanh
hinge_embedding_loss
hsigmoid_loss
instance_norm
interpolate
kl_div
l1_loss
label_smooth
layer_norm
leaky_relu
linear
local_response_norm
log_loss
log_sigmoid
log_softmax
margin_cross_entropy
margin_ranking_loss
max_pool1d
max_pool2d
max_pool3d
max_unpool1d
max_unpool2d
max_unpool3d
maxout
mish
mse_loss
multi_label_soft_margin_loss
multi_margin_loss
nll_loss
normalize
npair_loss
one_hot
pad
pairwise_distance
pixel_shuffle
pixel_unshuffle
poisson_nll_loss
prelu
relu
relu6
relu_
rnnt_loss
rrelu
selu
sequence_mask
sigmoid
sigmoid_focal_loss
silu
smooth_l1_loss
soft_margin_loss
softmax
softmax_
softmax_with_cross_entropy
softplus
softshrink
softsign
sparse_attention
square_error_cost
swish
tanhshrink
temporal_shift
thresholded_relu
triplet_margin_loss
triplet_margin_with_distance_loss
unfold
upsample
zeropad2d
GaussianNLLLoss
GELU
GLU
GroupNorm
GRU
GRUCell
Hardshrink
Hardsigmoid
Hardswish
Hardtanh
HingeEmbeddingLoss
HSigmoidLoss
Identity
initializer
InstanceNorm1D
InstanceNorm2D
InstanceNorm3D
KLDivLoss
L1Loss
Layer
LayerDict
LayerList
LayerNorm
LeakyReLU
Linear
LocalResponseNorm
LogSigmoid
LogSoftmax
LSTM
LSTMCell
MarginRankingLoss
Maxout
MaxPool1D
MaxPool2D
MaxPool3D
MaxUnPool1D
MaxUnPool2D
MaxUnPool3D
Mish
MSELoss
MultiHeadAttention
MultiLabelSoftMarginLoss
MultiMarginLoss
NLLLoss
Pad1D
Pad2D
Pad3D
PairwiseDistance
ParameterList
PixelShuffle
PixelUnshuffle
PoissonNLLLoss
PReLU
ReLU
ReLU6
RNN
RNNCellBase
RNNTLoss
RReLU
SELU
Sequential
Sigmoid
Silu
SimpleRNN
SimpleRNNCell
SmoothL1Loss
SoftMarginLoss
Softmax
Softmax2D
Softplus
Softshrink
Softsign
SpectralNorm
Swish
SyncBatchNorm
Tanh
Tanhshrink
ThresholdedReLU
Transformer
TransformerDecoder
TransformerDecoderLayer
TransformerEncoder
TransformerEncoderLayer
TripletMarginLoss
TripletMarginWithDistanceLoss
Unflatten
Unfold
Upsample
UpsamplingBilinear2D
UpsamplingNearest2D
utils
ZeroPad2D
paddle.onnx
paddle.optimizer
paddle.profiler
paddle.regularizer
paddle.signal
paddle.sparse
paddle.static
paddle.sysconfig
paddle.text
paddle.utils
paddle.version
paddle.vision
目录
文档
relu_
Edit on Github
relu_
¶
paddle.nn.functional.
relu_
(
x
,
name
=
None
)
[源代码]
¶
Inplace 版本的
relu
API,对输入
x
采用 Inplace 策略。
更多关于 inplace 操作的介绍请参考
3.1.3 原位(Inplace)操作和非原位操作的区别
了解详情。
该文档内容对你有帮助么?
反馈
反馈问题
文档反馈
开始使用
特性
文档
API
使用指南
工具平台
工具
AutoDL
PaddleHub
PARL
ERNIE
全部
平台
AI Studio
EasyDL
EasyEdge
资源
模型和数据集
学习资料
应用案例