mm¶
用于两个输入矩阵的相乘。
两个输入的形状可为任意维度,但当任一输入维度大于 3 时,两个输入的维度必须相等。
如果原始 Tensor input 或 mat2 的秩为 1 且未转置,则矩阵相乘后的前置或附加维度 1 将移除。
参数¶
input (Tensor):输入变量,类型为 Tensor。
mat2 (Tensor):输入变量,类型为 Tensor。
name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。
返回¶
Tensor,矩阵相乘后的结果。
* 例 1:
input: [B, ..., M, K], mat2: [B, ..., K, N]
out: [B, ..., M, N]
* 例 2:
input: [B, M, K], mat2: [B, K, N]
out: [B, M, N]
* 例 3:
input: [B, M, K], mat2: [K, N]
out: [B, M, N]
* 例 4:
input: [M, K], mat2: [K, N]
out: [M, N]
* 例 5:
input: [B, M, K], mat2: [K]
out: [B, M]
* 例 6:
input: [K], mat2: [K]
out: [1]
代码示例¶
>>> import paddle
>>> input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
>>> mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
>>> out = paddle.mm(input, mat2)
>>> out
Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
[[11., 14., 17., 20.],
[23., 30., 37., 44.],
[35., 46., 57., 68.]])