MNIST

class paddle.vision.datasets. MNIST ( image_path=None, label_path=None, mode='train', transform=None, download=True, backend=None ) [源代码]

MNIST 数据集的实现。

参数

  • image_path (str,可选) - 图像文件路径,如果 download 参数设置为 Trueimage_path 参数可以设置为 None。默认值为 None,默认存放在:~/.cache/paddle/dataset/mnist

  • label_path (str,可选) - 标签文件路径,如果 download 参数设置为 Truelabel_path 参数可以设置为 None。默认值为 None,默认存放在:~/.cache/paddle/dataset/mnist

  • mode (str,可选) - 'train''test' 模式两者之一,默认值为 'train'

  • transform (Callable,可选) - 图片数据的预处理,若为 None 即为不做预处理。默认值为 None

  • download (bool,可选) - 当 data_fileNone 时,该参数决定是否自动下载数据集文件。默认值为 True

  • backend (str,可选) - 指定要返回的图像类型:PIL.Image 或 numpy.ndarray。必须是 {'pil','cv2'} 中的值。如果未设置此选项,将从 paddle.vision.get_image_backend 获得这个值。默认值为 None

返回

Dataset,MNIST 数据集实例。

代码示例

>>> import itertools
>>> import paddle.vision.transforms as T
>>> from paddle.vision.datasets import MNIST


>>> mnist = MNIST()
>>> print(len(mnist))
60000

>>> for i in range(5):  # only show first 5 images
...     img, label = mnist[i]
...     # do something with img and label
...     print(type(img), img.size, label)
...     # <class 'PIL.Image.Image'> (28, 28) [5]


>>> transform = T.Compose(
...     [
...         T.ToTensor(),
...         T.Normalize(
...             mean=[127.5],
...             std=[127.5],
...         ),
...     ]
... )

>>> mnist_test = MNIST(
...     mode="test",
...     transform=transform,  # apply transform to every image
...     backend="cv2",  # use OpenCV as image transform backend
... )
>>> print(len(mnist_test))
10000

>>> for img, label in itertools.islice(iter(mnist_test), 5):  # only show first 5 images
...     # do something with img and label
...     print(type(img), img.shape, label)
...     # <class 'paddle.Tensor'> [1, 28, 28] [7]