max¶
- paddle. max ( x, axis=None, keepdim=False, name=None ) [source]
-
Computes the maximum of tensor elements over the given axis.
- Parameters
-
x (Tensor) – A tensor, the data type is float32, float64, int32, int64.
axis (int|list|tuple, optional) – The axis along which the maximum is computed. If
None
, compute the maximum over all elements of x and return a Tensor with a single element, otherwise must be in the range \([-x.ndim(x), x.ndim(x))\). If \(axis[i] < 0\), the axis to reduce is \(x.ndim + axis[i]\).keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the x unless
keepdim
is true, default value is False.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
Tensor, results of maximum on the specified axis of input tensor, it’s data type is the same as x.
Examples
import paddle # data_x is a Tensor with shape [2, 4] # the axis is a int element x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9], [0.1, 0.2, 0.6, 0.7]]) result1 = paddle.max(x) print(result1) #[0.9] result2 = paddle.max(x, axis=0) print(result2) #[0.2 0.3 0.6 0.9] result3 = paddle.max(x, axis=-1) print(result3) #[0.9 0.7] result4 = paddle.max(x, axis=1, keepdim=True) print(result4) #[[0.9] # [0.7]] # data_y is a Tensor with shape [2, 2, 2] # the axis is list y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]) result5 = paddle.max(y, axis=[1, 2]) print(result5) #[4. 8.] result6 = paddle.max(y, axis=[0, 1]) print(result6) #[7. 8.]