allclose¶
- paddle. allclose ( x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None ) [source]
-
This operator checks if all x and y satisfy the condition:
|x−y|≤atol+rtol×|y|elementwise, for all elements of x and y. The behaviour of this operator is analogous to numpy.allclose, namely that it returns True if two tensors are elementwise equal within a tolerance.
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float32, float64.
y (Tensor) – The input tensor, it’s data type should be float32, float64.
rtol (rtoltype, optional) – The relative tolerance. Default: 1e−5 .
atol (atoltype, optional) – The absolute tolerance. Default: 1e−8 .
equal_nan (equalnantype, optional) – If True , then two NaNs will be compared as equal. Default: False .
name (str, optional) – Name for the operation. For more information, please refer to Name. Default: None.
- Returns
-
The output tensor, it’s data type is bool.
- Return type
-
Tensor
- Raises
-
TypeError – The data type of
x
must be one of float32, float64.TypeError – The data type of
y
must be one of float32, float64.TypeError – The type of
rtol
must be float.TypeError – The type of
atol
must be float.TypeError – The type of
equal_nan
must be bool.
Examples
import paddle x = paddle.to_tensor([10000., 1e-07]) y = paddle.to_tensor([10000.1, 1e-08]) result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name="ignore_nan") np_result1 = result1.numpy() # [False] result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=True, name="equal_nan") np_result2 = result2.numpy() # [False] x = paddle.to_tensor([1.0, float('nan')]) y = paddle.to_tensor([1.0, float('nan')]) result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name="ignore_nan") np_result1 = result1.numpy() # [False] result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=True, name="equal_nan") np_result2 = result2.numpy() # [True]