Tensor¶
- class paddle. Tensor
-
-
abs
(
name=None
)
[source]
abs¶
-
Abs Operator.
This operator is used to perform elementwise abs for input $X$. \(out = |x|\)
- Parameters
-
x (Tensor) – (Tensor), The input tensor of abs op.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
(Tensor), The output tensor of abs op.
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.abs(x) print(out) # [0.4 0.2 0.1 0.3]
-
acos
(
name=None
)
[source]
acos¶
-
Arccosine Operator.
\(out = \cos^{-1}(x)\)
- Parameters
-
x (Tensor) – Input of acos operator
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of acos operator
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.acos(x) print(out) # [1.98231317 1.77215425 1.47062891 1.26610367]
-
add
(
y,
name=None
)
[source]
add¶
-
Elementwise Add Operator.
Add two tensors element-wise
The equation is:
\(Out = X + Y\)
$X$: a tensor of any dimension.
$Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
There are two cases for this operator:
The shape of $Y$ is the same with $X$.
The shape of $Y$ is a continuous subsequence of $X$.
For case 2:
Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index for broadcasting $Y$ onto $X$.
If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape(Y) = (2, 1) => (2).
For example:
shape(X) = (2, 3, 4, 5), shape(Y) = (,) shape(X) = (2, 3, 4, 5), shape(Y) = (5,) shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2 shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0 shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
- Parameters
-
x (Tensor) – (Variable), Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
y (Tensor) – (Variable), Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (string, optional) – Name of the output. Default is None. It’s used to print debug info for developers. Details: Name
- Returns
-
N-dimension tensor. A location into which the result is stored. It’s dimension equals with x
Examples:
import paddle x = paddle.to_tensor([2, 3, 4], 'float64') y = paddle.to_tensor([1, 5, 2], 'float64') z = paddle.add(x, y) print(z) # [3., 8., 6. ]
- Return type
-
out (Tensor)
-
add_
(
y,
name=None
)
add_¶
-
Inplace version of
add
API, the output Tensor will be inplaced with inputx
. Please refer to api_tensor_add.
-
add_n
(
name=None
)
[source]
add_n¶
-
This OP is used to sum one or more Tensor of the input.
For example:
Case 1: Input: input.shape = [2, 3] input = [[1, 2, 3], [4, 5, 6]] Output: output.shape = [2, 3] output = [[1, 2, 3], [4, 5, 6]] Case 2: Input: First input: input1.shape = [2, 3] Input1 = [[1, 2, 3], [4, 5, 6]] The second input: input2.shape = [2, 3] input2 = [[7, 8, 9], [10, 11, 12]] Output: output.shape = [2, 3] output = [[8, 10, 12], [14, 16, 18]]
- Parameters
-
inputs (Tensor|list[Tensor]|tuple[Tensor]) – A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent. Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
Tensor, the sum of input \(inputs\) , its shape and data types are consistent with \(inputs\).
Examples
import paddle input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32') input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32') output = paddle.add_n([input0, input1]) # [[8., 10., 12.], # [14., 16., 18.]]
-
addmm
(
x,
y,
beta=1.0,
alpha=1.0,
name=None
)
[source]
addmm¶
-
addmm
This operator is used to perform matrix multiplication for input $x$ and $y$. $input$ is added to the final result. The equation is:
\[Out = alpha * x * y + beta * input\]$Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.
- Parameters
-
input (Tensor) – The input Tensor to be added to the final result.
x (Tensor) – The first input Tensor for matrix multiplication.
y (Tensor) – The second input Tensor for matrix multiplication.
beta (float) – Coefficient of $input$.
alpha (float) – Coefficient of $x*y$.
name (str, optional) – Name of the output. Normally there is no need for user to set this property. For more information, please refer to Name. Default is None.
- Returns
-
The output Tensor of addmm op.
- Return type
-
Tensor
Examples
import paddle x = paddle.ones([2,2]) y = paddle.ones([2,2]) input = paddle.ones([2,2]) out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 ) print(out) # [[10.5 10.5] # [10.5 10.5]]
-
all
(
axis=None,
keepdim=False,
name=None
)
[source]
all¶
-
Computes the the
logical and
of tensor elements over the given dimension.- Parameters
-
x (Tensor) – An N-D Tensor, the input data type should be bool.
axis (int|list|tuple, optional) – The dimensions along which the
logical and
is compute. IfNone
, and all elements ofx
and return a Tensor with a single element, otherwise must be in the range \([-rank(x), rank(x))\). If \(axis[i] < 0\), the dimension to reduce is \(rank + axis[i]\).keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result Tensor will have one fewer dimension than the
x
unlesskeepdim
is true, default value is False.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
Results the
logical and
on the specified axis of input Tensor x, it’s data type is bool. - Return type
-
Tensor
- Raises
-
ValueError – If the data type of x is not bool.
TypeError – The type of
axis
must be int, list or tuple.
Examples
import paddle import numpy as np # x is a bool Tensor with following elements: # [[True, False] # [True, True]] x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32')) print(x) x = paddle.cast(x, 'bool') # out1 should be [False] out1 = paddle.all(x) # [False] print(out1) # out2 should be [True, False] out2 = paddle.all(x, axis=0) # [True, False] print(out2) # keep_dim=False, out3 should be [False, True], out.shape should be (2,) out3 = paddle.all(x, axis=-1) # [False, True] print(out3) # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1) out4 = paddle.all(x, axis=1, keepdim=True) out4 = paddle.cast(out4, 'int32') # [[False], [True]] print(out4)
-
allclose
(
y,
rtol=1e-05,
atol=1e-08,
equal_nan=False,
name=None
)
[source]
allclose¶
-
This operator checks if all \(x\) and \(y\) satisfy the condition:
\[\left| x - y \right| \leq atol + rtol \times \left| y \right|\]elementwise, for all elements of \(x\) and \(y\). The behaviour of this operator is analogous to \(numpy.allclose\), namely that it returns \(True\) if two tensors are elementwise equal within a tolerance.
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float32, float64.
y (Tensor) – The input tensor, it’s data type should be float32, float64.
rtol (rtoltype, optional) – The relative tolerance. Default: \(1e-5\) .
atol (atoltype, optional) – The absolute tolerance. Default: \(1e-8\) .
equal_nan (equalnantype, optional) – If \(True\) , then two \(NaNs\) will be compared as equal. Default: \(False\) .
name (str, optional) – Name for the operation. For more information, please refer to Name. Default: None.
- Returns
-
The output tensor, it’s data type is bool.
- Return type
-
Tensor
- Raises
-
TypeError – The data type of
x
must be one of float32, float64.TypeError – The data type of
y
must be one of float32, float64.TypeError – The type of
rtol
must be float.TypeError – The type of
atol
must be float.TypeError – The type of
equal_nan
must be bool.
Examples
import paddle x = paddle.to_tensor([10000., 1e-07]) y = paddle.to_tensor([10000.1, 1e-08]) result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name="ignore_nan") np_result1 = result1.numpy() # [False] result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=True, name="equal_nan") np_result2 = result2.numpy() # [False] x = paddle.to_tensor([1.0, float('nan')]) y = paddle.to_tensor([1.0, float('nan')]) result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name="ignore_nan") np_result1 = result1.numpy() # [False] result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=True, name="equal_nan") np_result2 = result2.numpy() # [True]
-
any
(
axis=None,
keepdim=False,
name=None
)
[source]
any¶
-
Computes the the
logical or
of tensor elements over the given dimension.- Parameters
-
x (Tensor) – An N-D Tensor, the input data type should be bool.
axis (int|list|tuple, optional) – The dimensions along which the
logical or
is compute. IfNone
, and all elements ofx
and return a Tensor with a single element, otherwise must be in the range \([-rank(x), rank(x))\). If \(axis[i] < 0\), the dimension to reduce is \(rank + axis[i]\).keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result Tensor will have one fewer dimension than the
x
unlesskeepdim
is true, default value is False.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
Results the
logical or
on the specified axis of input Tensor x, it’s data type is bool. - Return type
-
Tensor
- Raises
-
ValueError – If the data type of x is not bool.
TypeError – The type of
axis
must be int, list or tuple.
Examples
import paddle import numpy as np # x is a bool Tensor with following elements: # [[True, False] # [False, False]] x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32')) print(x) x = paddle.cast(x, 'bool') # out1 should be [True] out1 = paddle.any(x) # [True] print(out1) # out2 should be [True, True] out2 = paddle.any(x, axis=0) # [True, True] print(out2) # keep_dim=False, out3 should be [True, True], out.shape should be (2,) out3 = paddle.any(x, axis=-1) # [True, True] print(out3) # keep_dim=True, result should be [[True], [True]], out.shape should be (2,1) out4 = paddle.any(x, axis=1, keepdim=True) out4 = paddle.cast(out4, 'int32') # [[True], [True]] print(out4)
-
argmax
(
axis=None,
keepdim=False,
dtype='int64',
name=None
)
[source]
argmax¶
-
This OP computes the indices of the max elements of the input tensor’s element along the provided axis.
- Parameters
-
x (Tensor) – An input N-D Tensor with type float32, float64, int16, int32, int64, uint8.
axis (int, optional) – Axis to compute indices along. The effective range is [-R, R), where R is x.ndim. when axis < 0, it works the same way as axis + R. Default is None, the input x will be into the flatten tensor, and selecting the min value index.
keepdim (bool, optional) – Keep the axis that selecting max. The defalut value is False.
dtype (str|np.dtype, optional) – Data type of the output tensor which can be int32, int64. The default value is ‘int64’, and it will return the int64 indices.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
Tensor, return the tensor of int32 if set
dtype
is int32, otherwise return the tensor of int64
Examples
import paddle x = paddle.to_tensor([[5,8,9,5], [0,0,1,7], [6,9,2,4]]) out1 = paddle.argmax(x) print(out1) # 2 out2 = paddle.argmax(x, axis=1) print(out2) # [2 3 1] out3 = paddle.argmax(x, axis=-1) print(out3) # [2 3 1]
-
argmin
(
axis=None,
keepdim=False,
dtype='int64',
name=None
)
[source]
argmin¶
-
This OP computes the indices of the min elements of the input tensor’s element along the provided axis.
- Parameters
-
x (Tensor) – An input N-D Tensor with type float32, float64, int16, int32, int64, uint8.
axis (int, optional) – Axis to compute indices along. The effective range is [-R, R), where R is x.ndim. when axis < 0, it works the same way as axis + R. Default is None, the input x will be into the flatten tensor, and selecting the min value index.
keepdim (bool, optional) – Keep the axis that selecting min. The defalut value is False.
dtype (str) – Data type of the output tensor which can be int32, int64. The default value is ‘int64’, and it will return the int64 indices.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
Tensor, return the tensor of int32 if set
dtype
is int32, otherwise return the tensor of int64
Examples
import paddle x = paddle.to_tensor([[5,8,9,5], [0,0,1,7], [6,9,2,4]]) out1 = paddle.argmin(x) print(out1) # 4 out2 = paddle.argmin(x, axis=1) print(out2) # [0 0 2] out3 = paddle.argmin(x, axis=-1) print(out3) # [0 0 2]
-
argsort
(
axis=- 1,
descending=False,
name=None
)
[source]
argsort¶
-
This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the
descending
as True.- Parameters
-
x (Tensor) – An input N-D Tensor with type float32, float64, int16, int32, int64, uint8.
axis (int, optional) – Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0.
descending (bool, optional) – Descending is a flag, if set to true, algorithm will sort by descending order, else sort by ascending order. Default is false.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
sorted indices(with the same shape as
x
and with data type int64). - Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]], dtype='float32') out1 = paddle.argsort(x=x, axis=-1) out2 = paddle.argsort(x=x, axis=0) out3 = paddle.argsort(x=x, axis=1) print(out1) #[[[0 3 1 2] # [0 1 2 3] # [2 3 0 1]] # [[1 3 2 0] # [0 1 2 3] # [2 0 3 1]]] print(out2) #[[[0 1 1 1] # [0 0 0 0] # [1 1 1 0]] # [[1 0 0 0] # [1 1 1 1] # [0 0 0 1]]] print(out3) #[[[1 1 1 2] # [0 0 2 0] # [2 2 0 1]] # [[2 0 2 0] # [1 1 0 2] # [0 2 1 1]]]
-
asin
(
name=None
)
[source]
asin¶
-
Arcsine Operator.
\(out = \sin^{-1}(x)\)
- Parameters
-
x (Tensor) – Input of asin operator, an N-D Tensor, with data type float32, float64 or float16.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of asin operator
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.asin(x) print(out) # [-0.41151685 -0.20135792 0.10016742 0.30469265]
-
astype
(
dtype
)
astype¶
-
Cast a Tensor to a specified data type.
- Parameters
-
dtype – The target data type.
- Returns
-
a new Tensor with target dtype
- Return type
-
Tensor
Examples
import paddle import numpy as np original_tensor = paddle.ones([2, 2]) print("original tensor's dtype is: {}".format(original_tensor.dtype)) new_tensor = original_tensor.astype('float32') print("new tensor's dtype is: {}".format(new_tensor.dtype))
-
atan
(
name=None
)
[source]
atan¶
-
Arctangent Operator.
\(out = \tan^{-1}(x)\)
- Parameters
-
x (Tensor) – Input of atan operator, an N-D Tensor, with data type float32, float64 or float16.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of atan operator
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.atan(x) print(out) # [-0.38050638 -0.19739556 0.09966865 0.29145679]
-
backward
(
grad_tensor=None,
retain_graph=False
)
backward¶
-
Run backward of current Graph which starts from current Tensor.
The new gradient will accumulat on previous gradient.
You can clear gradient by
Tensor.clear_grad()
.- Parameters
-
grad_tensor (Tensor, optional) – initial gradient values of the current Tensor. If grad_tensor is None,
1.0; (the initial gradient values of the current Tensor would be Tensor filled with) –
None (if grad_tensor is not) –
Tensor. (it must have the same length as the current) –
None. (Teh default value is) –
retain_graph (bool, optional) – If False, the graph used to compute grads will be freed. If you would like to add more ops to the built graph after calling this method(
backward
), set the parameterretain_graph
to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient. Defaults to False.
- Returns
-
None
- Return type
-
NoneType
Examples
import paddle x = paddle.to_tensor(5., stop_gradient=False) for i in range(5): y = paddle.pow(x, 4.0) y.backward() print("{}: {}".format(i, x.grad)) # 0: [500.] # 1: [1000.] # 2: [1500.] # 3: [2000.] # 4: [2500.] x.clear_grad() print("{}".format(x.grad)) # 0. grad_tensor=paddle.to_tensor(2.) for i in range(5): y = paddle.pow(x, 4.0) y.backward(grad_tensor) print("{}: {}".format(i, x.grad)) # 0: [1000.] # 1: [2000.] # 2: [3000.] # 3: [4000.] # 4: [5000.]
-
bincount
(
weights=None,
minlength=0,
name=None
)
[source]
bincount¶
-
Computes frequency of each value in the input tensor.
- Parameters
-
x (Tensor) – A Tensor with non-negative integer. Should be 1-D tensor.
weights (Tensor, optional) – Weight for each value in the input tensor. Should have the same shape as input. Default is None.
minlength (int, optional) – Minimum number of bins. Should be non-negative integer. Default is 0.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The tensor of frequency.
- Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([1, 2, 1, 4, 5]) result1 = paddle.bincount(x) print(result1) # [0, 2, 1, 0, 1, 1] w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5]) result2 = paddle.bincount(x, weights=w) print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
-
bitwise_and
(
y,
out=None,
name=None
)
[source]
bitwise_and¶
-
It operates
bitwise_and
on TensorX
andY
.\[Out = X \& Y\]Note
paddle.bitwise_and
supports broadcasting. If you want know more about broadcasting, please refer to Broadcasting.- Parameters
-
x (Tensor) – Input Tensor of
bitwise_and
. It is a N-D Tensor of bool, uint8, int8, int16, int32, int64y (Tensor) – Input Tensor of
bitwise_and
. It is a N-D Tensor of bool, uint8, int8, int16, int32, int64out (Tensor) – Result of
bitwise_and
. It is a N-D Tensor with the same data type of input Tensor
- Returns
-
Result of
bitwise_and
. It is a N-D Tensor with the same data type of input Tensor - Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([-5, -1, 1]) y = paddle.to_tensor([4, 2, -3]) res = paddle.bitwise_and(x, y) print(res) # [0, 2, 1]
-
bitwise_not
(
out=None,
name=None
)
[source]
bitwise_not¶
-
It operates
bitwise_not
on TensorX
.\[Out = \sim X\]- Parameters
-
x (Tensor) – Input Tensor of
bitwise_not
. It is a N-D Tensor of bool, uint8, int8, int16, int32, int64out (Tensor) – Result of
bitwise_not
. It is a N-D Tensor with the same data type of input Tensor
- Returns
-
Result of
bitwise_not
. It is a N-D Tensor with the same data type of input Tensor - Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([-5, -1, 1]) res = paddle.bitwise_not(x) print(res) # [4, 0, -2]
-
bitwise_or
(
y,
out=None,
name=None
)
[source]
bitwise_or¶
-
It operates
bitwise_or
on TensorX
andY
.\[Out = X | Y\]Note
paddle.bitwise_or
supports broadcasting. If you want know more about broadcasting, please refer to Broadcasting.- Parameters
-
x (Tensor) – Input Tensor of
bitwise_or
. It is a N-D Tensor of bool, uint8, int8, int16, int32, int64y (Tensor) – Input Tensor of
bitwise_or
. It is a N-D Tensor of bool, uint8, int8, int16, int32, int64out (Tensor) – Result of
bitwise_or
. It is a N-D Tensor with the same data type of input Tensor
- Returns
-
Result of
bitwise_or
. It is a N-D Tensor with the same data type of input Tensor - Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([-5, -1, 1]) y = paddle.to_tensor([4, 2, -3]) res = paddle.bitwise_or(x, y) print(res) # [-1, -1, -3]
-
bitwise_xor
(
y,
out=None,
name=None
)
[source]
bitwise_xor¶
-
It operates
bitwise_xor
on TensorX
andY
.\[Out = X ^\wedge Y\]Note
paddle.bitwise_xor
supports broadcasting. If you want know more about broadcasting, please refer to Broadcasting.- Parameters
-
x (Tensor) – Input Tensor of
bitwise_xor
. It is a N-D Tensor of bool, uint8, int8, int16, int32, int64y (Tensor) – Input Tensor of
bitwise_xor
. It is a N-D Tensor of bool, uint8, int8, int16, int32, int64out (Tensor) – Result of
bitwise_xor
. It is a N-D Tensor with the same data type of input Tensor
- Returns
-
Result of
bitwise_xor
. It is a N-D Tensor with the same data type of input Tensor - Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([-5, -1, 1]) y = paddle.to_tensor([4, 2, -3]) res = paddle.bitwise_xor(x, y) print(res) # [-1, -3, -4]
-
bmm
(
y,
name=None
)
[source]
bmm¶
-
Applies batched matrix multiplication to two tensors.
Both of the two input tensors must be three-dementional and share the same batch size.
if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.
- Parameters
-
x (Tensor) – The input Tensor.
y (Tensor) – The input Tensor.
name (str|None) – A name for this layer(optional). If set None, the layer will be named automatically.
- Returns
-
The product Tensor.
- Return type
-
Tensor
Examples
import paddle # In imperative mode: # size x: (2, 2, 3) and y: (2, 3, 2) x = paddle.to_tensor([[[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]], [[3.0, 3.0, 3.0], [4.0, 4.0, 4.0]]]) y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]], [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]]) out = paddle.bmm(x, y) #output size: (2, 2, 2) #output value: #[[[6.0, 6.0],[12.0, 12.0]],[[45.0, 45.0],[60.0, 60.0]]] out_np = out.numpy()
-
broadcast_shape
(
y_shape
)
[source]
broadcast_shape¶
-
The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to Broadcasting for more details.
- Parameters
-
x_shape (list[int]|tuple[int]) – A shape of tensor.
y_shape (list[int]|tuple[int]) – A shape of tensor.
- Returns
-
list[int], the result shape.
Examples
import paddle shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1]) # [2, 3, 3] # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1]) # ValueError (terminated with error message).
-
broadcast_tensors
(
name=None
)
[source]
broadcast_tensors¶
-
This OP broadcast a list of tensors following broadcast semantics
Note
If you want know more about broadcasting, please refer to Broadcasting.
- Parameters
-
input (list|tuple) –
input
is a Tensor list or Tensor tuple which is with data type bool, float16, float32, float64, int32, int64. All the Tensors ininput
must have same data type. Currently we only support tensors with rank no greater than 5.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The list of broadcasted tensors following the same order as
input
. - Return type
-
list(Tensor)
Examples
import paddle x1 = paddle.rand([1, 2, 3, 4]).astype('float32') x2 = paddle.rand([1, 2, 1, 4]).astype('float32') x3 = paddle.rand([1, 1, 3, 1]).astype('float32') out1, out2, out3 = paddle.broadcast_tensors(input=[x1, x2, x3]) # out1, out2, out3: tensors broadcasted from x1, x2, x3 with shape [1,2,3,4]
-
broadcast_to
(
shape,
name=None
)
[source]
broadcast_to¶
-
Broadcast the input tensor to a given shape.
Both the number of dimensions of
x
and the number of elements inshape
should be less than or equal to 6. The dimension to broadcast to must have a value 1.- Parameters
-
x (Tensor) – The input tensor, its data type is bool, float32, float64, int32 or int64.
shape (list|tuple|Tensor) – The result shape after broadcasting. The data type is int32. If shape is a list or tuple, all its elements should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. The value -1 in shape means keeping the corresponding dimension unchanged.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
A Tensor with the given shape. The data type is the same as
x
. - Return type
-
N-D Tensor
Examples
import paddle data = paddle.to_tensor([1, 2, 3], dtype='int32') out = paddle.broadcast_to(data, shape=[2, 3]) print(out) # [[1, 2, 3], [1, 2, 3]]
-
cast
(
dtype
)
[source]
cast¶
-
This OP takes in the Tensor
x
withx.dtype
and casts it to the output withdtype
. It’s meaningless if the output dtype equals the input dtype, but it’s fine if you do so.- Parameters
-
x (Tensor) – An input N-D Tensor with data type bool, float16, float32, float64, int32, int64, uint8.
dtype (np.dtype|core.VarDesc.VarType|str) – Data type of the output: bool, float16, float32, float64, int8, int32, int64, uint8.
- Returns
-
A Tensor with the same shape as input’s.
- Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([2, 3, 4], 'float64') y = paddle.cast(x, 'uint8')
-
ceil
(
name=None
)
[source]
ceil¶
-
Ceil Operator. Computes ceil of x element-wise.
\(out = \\lceil x \\rceil\)
- Parameters
-
x (Tensor) – Input of Ceil operator, an N-D Tensor, with data type float32, float64 or float16.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of Ceil operator, a Tensor with shape same as input.
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.ceil(x) print(out) # [-0. -0. 1. 1.]
-
ceil_
(
name=None
)
ceil_¶
-
Inplace version of
ceil
API, the output Tensor will be inplaced with inputx
. Please refer to api_fluid_layers_ceil.
-
cholesky
(
upper=False,
name=None
)
[source]
cholesky¶
-
Computes the Cholesky decomposition of one symmetric positive-definite matrix or batches of symmetric positive-definite matrice.
If upper is True, the decomposition has the form \(A = U^{T}U\) , and the returned matrix \(U\) is upper-triangular. Otherwise, the decomposition has the form \(A = LL^{T}\) , and the returned matrix \(L\) is lower-triangular.
- Parameters
-
x (Tensor) – The input tensor. Its shape should be [*, M, M], where * is zero or more batch dimensions, and matrices on the inner-most 2 dimensions all should be symmetric positive-definite. Its data type should be float32 or float64.
upper (bool) – The flag indicating whether to return upper or lower triangular matrices. Default: False.
- Returns
-
- A Tensor with same shape and data type as x. It represents
-
triangular matrices generated by Cholesky decomposition.
- Return type
-
Tensor
Examples
import paddle import numpy as np a = np.random.rand(3, 3) a_t = np.transpose(a, [1, 0]) x_data = np.matmul(a, a_t) + 1e-03 x = paddle.to_tensor(x_data) out = paddle.cholesky(x, upper=False) print(out) # [[1.190523 0. 0. ] # [0.9906703 0.27676893 0. ] # [1.25450498 0.05600871 0.06400121]]
-
chunk
(
chunks,
axis=0,
name=None
)
[source]
chunk¶
-
Split the input tensor into multiple sub-Tensors.
- Parameters
-
x (Tensor) – A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
chunks (int) – The number of tensor to be split along the certain axis.
axis (int|Tensor, optional) – The axis along which to split, it can be a scalar with type
int
or aTensor
with shape [1] and data typeint32
orint64
. If :math::axis < 0, the axis to split along is \(rank(x) + axis\). Default is 0.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
The list of segmented Tensors.
- Return type
-
list(Tensor)
Example
import numpy as np import paddle # x is a Tensor which shape is [3, 9, 5] x_np = np.random.random([3, 9, 5]).astype("int32") x = paddle.to_tensor(x_np) out0, out1, out2 = paddle.chunk(x, chunks=3, axis=1) # out0.shape [3, 3, 5] # out1.shape [3, 3, 5] # out2.shape [3, 3, 5] # axis is negative, the real axis is (rank(x) + axis) which real # value is 1. out0, out1, out2 = paddle.chunk(x, chunks=3, axis=-2) # out0.shape [3, 3, 5] # out1.shape [3, 3, 5] # out2.shape [3, 3, 5]
-
clear_grad
(
)
clear_grad¶
-
The alias of clear_gradient().
-
clear_gradient
(
self: paddle.fluid.core_avx.VarBase
)
None
clear_gradient¶
-
Only for Tensor that has gradient, normally we use this for Parameters since other temporary Tensor doesen’t has gradient.
The Gradient of current Tensor will be set to
0
.Returns: None
Examples
import paddle input = paddle.uniform([10, 2]) linear = paddle.nn.Linear(2, 3) out = linear(input) out.backward() print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad)) linear.weight.clear_gradient() print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
-
clip
(
min=None,
max=None,
name=None
)
[source]
clip¶
-
This operator clip all elements in input into the range [ min, max ] and return a resulting tensor as the following equation:
\[Out = MIN(MAX(x, min), max)\]- Parameters
-
x (Tensor) – An N-D Tensor with data type float32, float64, int32 or int64.
min (float|int|Tensor) – The lower bound with type
float
,int
or aTensor
with shape [1] and typeint32
,float32
,float64
.max (float|int|Tensor) – The upper bound with type
float
,int
or aTensor
with shape [1] and typeint32
,float32
,float64
.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
A Tensor with the same data type and data shape as input.
- Return type
-
Tensor
Examples
import paddle x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32') out1 = paddle.clip(x1, min=3.5, max=5.0) out2 = paddle.clip(x1, min=2.5) print(out1) # [[3.5, 3.5] # [4.5, 5.0]] print(out2) # [[2.5, 3.5] # [[4.5, 6.4]
-
clip_
(
min=None,
max=None,
name=None
)
clip_¶
-
Inplace version of
clip
API, the output Tensor will be inplaced with inputx
. Please refer to api_tensor_clip.
-
clone
(
self: paddle.fluid.core_avx.VarBase
)
paddle.fluid.core_avx.VarBase
clone¶
-
Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph. It will always have a Tensor copy. Tn addition, the cloned Tensor provides gradient propagation.
Returns: The cloned Tensor.
Examples
import paddle x = paddle.to_tensor(1.0, stop_gradient=False) clone_x = x.clone() y = clone_x**2 y.backward() print(clone_x.stop_gradient) # False print(clone_x.grad) # [2.0], support gradient propagation print(x.stop_gradient) # False print(x.grad) # [2.0], clone_x support gradient propagation for x x = paddle.to_tensor(1.0) clone_x = x.clone() clone_x.stop_gradient = False z = clone_x**3 z.backward() print(clone_x.stop_gradient) # False print(clone_x.grad) # [3.0], support gradient propagation print(x.stop_gradient) # True print(x.grad) # None
-
concat
(
axis=0,
name=None
)
[source]
concat¶
-
This OP concatenates the input along the axis.
- Parameters
-
x (list|tuple) –
x
is a Tensor list or Tensor tuple which is with data type bool, float16, float32, float64, int32, int64, uint8. All the Tensors inx
must have same data type.axis (int|Tensor, optional) – Specify the axis to operate on the input Tensors. It’s a scalar with data type int or a Tensor with shape [1] and data type int32 or int64. The effective range is [-R, R), where R is Rank(x). When
axis < 0
, it works the same way asaxis+R
. Default is 0.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
A Tensor with the same data type as
x
. - Return type
-
Tensor
Examples
import paddle x1 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]]) x2 = paddle.to_tensor([[11, 12, 13], [14, 15, 16]]) x3 = paddle.to_tensor([[21, 22], [23, 24]]) zero = paddle.full(shape=[1], dtype='int32', fill_value=0) # When the axis is negative, the real axis is (axis + Rank(x)) # As follow, axis is -1, Rank(x) is 2, the real axis is 1 out1 = paddle.concat(x=[x1, x2, x3], axis=-1) out2 = paddle.concat(x=[x1, x2], axis=0) out3 = paddle.concat(x=[x1, x2], axis=zero) # out1 # [[ 1 2 3 11 12 13 21 22] # [ 4 5 6 14 15 16 23 24]] # out2 out3 # [[ 1 2 3] # [ 4 5 6] # [11 12 13] # [14 15 16]]
-
cond
(
p=None,
name=None
)
cond¶
-
Computes the condition number of a matrix or batches of matrices with respect to a matrix norm
p
.- Parameters
-
x (Tensor) – The input tensor could be tensor of shape
(*, m, n)
where*
is zero or more batch dimensions forp
in(2, -2)
, or of shape(*, n, n)
where every matrix is invertible for any supportedp
. And the input data type could befloat32
orfloat64
.p (float|string, optional) – Order of the norm. Supported values are fro, nuc, 1, -1, 2, -2, inf, -inf. Default value is None, meaning that the order of the norm is 2.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
computing results of condition number, its data type is the same as input Tensor
x
. - Return type
-
Tensor
Examples
import paddle import numpy as np x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]]) # compute conditional number when p is None out = paddle.linalg.cond(x) # out.numpy() [1.4142135] # compute conditional number when order of the norm is 'fro' out_fro = paddle.linalg.cond(x, p='fro') # out_fro.numpy() [3.1622777] # compute conditional number when order of the norm is 'nuc' out_nuc = paddle.linalg.cond(x, p='nuc') # out_nuc.numpy() [9.2426405] # compute conditional number when order of the norm is 1 out_1 = paddle.linalg.cond(x, p=1) # out_1.numpy() [2.] # compute conditional number when order of the norm is -1 out_minus_1 = paddle.linalg.cond(x, p=-1) # out_minus_1.numpy() [1.] # compute conditional number when order of the norm is 2 out_2 = paddle.linalg.cond(x, p=2) # out_2.numpy() [1.4142135] # compute conditional number when order of the norm is -1 out_minus_2 = paddle.linalg.cond(x, p=-2) # out_minus_2.numpy() [0.70710677] # compute conditional number when order of the norm is inf out_inf = paddle.linalg.cond(x, p=np.inf) # out_inf.numpy() [2.] # compute conditional number when order of the norm is -inf out_minus_inf = paddle.linalg.cond(x, p=-np.inf) # out_minus_inf.numpy() [1.] a = paddle.to_tensor(np.random.randn(2, 4, 4).astype('float32')) # a.numpy() # [[[ 0.14063153 -0.996288 0.7996131 -0.02571543] # [-0.16303636 1.5534962 -0.49919784 -0.04402903] # [-1.1341571 -0.6022629 0.5445269 0.29154757] # [-0.16816919 -0.30972657 1.7521842 -0.5402487 ]] # [[-0.58081484 0.12402827 0.7229862 -0.55046535] # [-0.15178485 -1.1604939 0.75810957 0.30971205] # [-0.9669573 1.0940945 -0.27363303 -0.35416734] # [-1.216529 2.0018666 -0.7773689 -0.17556527]]] a_cond_fro = paddle.linalg.cond(a, p='fro') # a_cond_fro.numpy() [31.572273 28.120834] b = paddle.to_tensor(np.random.randn(2, 3, 4).astype('float64')) # b.numpy() # [[[ 1.61707487 0.46829144 0.38130416 0.82546736] # [-1.72710298 0.08866375 -0.62518804 0.16128892] # [-0.02822879 -1.67764516 0.11141444 0.3220113 ]] # [[ 0.22524372 0.62474921 -0.85503233 -1.03960523] # [-0.76620689 0.56673047 0.85064753 -0.45158196] # [ 1.47595418 2.23646462 1.5701758 0.10497519]]] b_cond_2 = paddle.linalg.cond(b, p=2) # b_cond_2.numpy() [3.30064451 2.51976252]
-
conj
(
name=None
)
[source]
conj¶
-
This function computes the conjugate of the Tensor elementwisely.
- Parameters
-
x (Tensor) – The input tensor which hold the complex numbers. Optional data types are: complex64, complex128, float32, float64, int32 or int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
- The conjugate of input. The shape and data type is the same with input.
-
If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
- Return type
-
out (Tensor)
Examples
import paddle data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]]) #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True, # [[(1+1j), (2+2j), (3+3j)], # [(4+4j), (5+5j), (6+6j)]]) conj_data=paddle.conj(data) #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True, # [[(1-1j), (2-2j), (3-3j)], # [(4-4j), (5-5j), (6-6j)]])
-
copy_
(
self: paddle.fluid.core_avx.VarBase,
arg0: paddle.fluid.core_avx.VarBase,
arg1: bool
)
None
copy_¶
-
cos
(
name=None
)
[source]
cos¶
-
Cosine Operator. Computes cosine of x element-wise.
Input range is (-inf, inf) and output range is [-1,1].
\(out = cos(x)\)
- Parameters
-
x (Tensor) – Input of Cos operator, an N-D Tensor, with data type float32, float64 or float16.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of Cos operator, a Tensor with shape same as input.
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.cos(x) print(out) # [0.92106099 0.98006658 0.99500417 0.95533649]
-
cosh
(
name=None
)
[source]
cosh¶
-
Cosh Activation Operator.
\(out = cosh(x)\)
- Parameters
-
x (Tensor) – Input of Cosh operator, an N-D Tensor, with data type float32, float64 or float16.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of Cosh operator, a Tensor with shape same as input.
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.cosh(x) print(out) # [1.08107237 1.02006676 1.00500417 1.04533851]
-
cpu
(
self: paddle.fluid.core_avx.VarBase
)
paddle.fluid.core_avx.VarBase
cpu¶
-
Returns a copy of this Tensor in CPU memory.
If this Tensor is already in CPU memory, then no copy is performed and the original Tensor is returned.
Examples
import paddle x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0)) print(x.place) # CUDAPlace(0) y = x.cpu() print(y.place) # CPUPlace
-
cross
(
y,
axis=None,
name=None
)
[source]
cross¶
-
Computes the cross product between two tensors along an axis.
Inputs must have the same shape, and the length of their axes should be equal to 3. If axis is not given, it defaults to the first axis found with the length 3.
- Parameters
-
x (Tensor) – The first input tensor.
y (Tensor) – The second input tensor.
axis (int, optional) – The axis along which to compute the cross product. It defaults to the first axis found with the length 3.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor. A Tensor with same data type as x.
Examples
import paddle x = paddle.to_tensor([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0], [3.0, 3.0, 3.0]]) y = paddle.to_tensor([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]) z1 = paddle.cross(x, y) # [[-1. -1. -1.] # [ 2. 2. 2.] # [-1. -1. -1.]] z2 = paddle.cross(x, y, axis=1) # [[0. 0. 0.] # [0. 0. 0.] # [0. 0. 0.]]
-
cuda
(
self: paddle.fluid.core_avx.VarBase,
device_id: handle = None,
blocking: bool = True
)
paddle.fluid.core_avx.VarBase
cuda¶
-
Returns a copy of this Tensor in GPU memory.
If this Tensor is already in GPU memory and device_id is default, then no copy is performed and the original Tensor is returned.
- Parameters
-
device_id (int, optional) – The destination GPU device id. Default: None, means current device.
blocking (bool, optional) – If False and the source is in pinned memory, the copy will be asynchronous with respect to the host. Otherwise, the argument has no effect. Default: False.
Examples
# required: gpu import paddle x = paddle.to_tensor(1.0, place=paddle.CPUPlace()) print(x.place) # CPUPlace y = x.cuda() print(y.place) # CUDAPlace(0) y = x.cuda(None) print(y.place) # CUDAPlace(0) y = x.cuda(1) print(y.place) # CUDAPlace(1)
-
cumprod
(
dim=None,
dtype=None,
name=None
)
[source]
cumprod¶
-
Compute the cumulative product of the input tensor x along a given dimension dim.
Note: The first element of the result is the same as the first element of the input.
- Parameters
-
x (Tensor) – the input tensor need to be cumproded.
dim (int) – the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank), where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
dtype (str, optional) – The data type of the output tensor, can be float32, float64, int32, int64, complex64, complex128. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the result of cumprod operator.
Examples
import paddle data = paddle.arange(12) data = paddle.reshape(data, (3, 4)) # [[ 0 1 2 3 ] # [ 4 5 6 7 ] # [ 8 9 10 11]] y = paddle.cumprod(data, dim=0) # [[ 0 1 2 3] # [ 0 5 12 21] # [ 0 45 120 231]] y = paddle.cumprod(data, dim=-1) # [[ 0 0 0 0] # [ 4 20 120 840] # [ 8 72 720 7920]] y = paddle.cumprod(data, dim=1, dtype='float64') # [[ 0. 0. 0. 0.] # [ 4. 20. 120. 840.] # [ 8. 72. 720. 7920.]] print(y.dtype) # paddle.float64
-
cumsum
(
axis=None,
dtype=None,
name=None
)
[source]
cumsum¶
-
The cumulative sum of the elements along a given axis.
Note: The first element of the result is the same of the first element of the input.
- Parameters
-
x (Tensor) – The input tensor needed to be cumsumed.
axis (int, optional) – The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
dtype (str, optional) – The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the result of cumsum operator.
Examples
import paddle data = paddle.arange(12) data = paddle.reshape(data, (3, 4)) y = paddle.cumsum(data) # [ 0 1 3 6 10 15 21 28 36 45 55 66] y = paddle.cumsum(data, axis=0) # [[ 0 1 2 3] # [ 4 6 8 10] # [12 15 18 21]] y = paddle.cumsum(data, axis=-1) # [[ 0 1 3 6] # [ 4 9 15 22] # [ 8 17 27 38]] y = paddle.cumsum(data, dtype='float64') print(y.dtype) # VarType.FP64
-
detach
(
self: paddle.fluid.core_avx.VarBase
)
paddle.fluid.core_avx.VarBase
detach¶
-
Returns a new Tensor, detached from the current graph. It will share data with origin Tensor and always doesn’t have a Tensor copy. In addition, the detached Tensor doesn’t provide gradient propagation.
Returns: The detached Tensor.
Examples
import paddle x = paddle.to_tensor(1.0, stop_gradient=False) detach_x = x.detach() detach_x[:] = 10.0 print(x) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False, # [10.]) y = x**2 y.backward() print(x.grad) # [20.0] print(detach_x.grad) # None, 'stop_gradient=True' by default detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad z = detach_x**3 z.backward() print(x.grad) # [20.0], detach_x is detached from x's graph, not affect each other print(detach_x.grad) # [300.0], detach_x has its own graph # Due to sharing of data with origin Tensor, There are some unsafe operations: y = 2 * x detach_x[:] = 5.0 y.backward() # It will raise Error: # one of the variables needed for gradient computation has been modified by an inplace operation.
-
diagonal
(
offset=0,
axis1=0,
axis2=1,
name=None
)
[source]
diagonal¶
-
This OP computes the diagonals of the input tensor x.
If
x
is 2D, returns the diagonal. Ifx
has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axis of the input tensor x.The argument
offset
determines where diagonals are taken from input tensor x:If offset = 0, it is the main diagonal.
If offset > 0, it is above the main diagonal.
If offset < 0, it is below the main diagonal.
- Parameters
-
x (Tensor) – The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
offset (int, optional) – Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
axis1 (int, optional) – The first axis with respect to take diagonal. Default: 0.
axis2 (int, optional) – The second axis with respect to take diagonal. Default: 1.
name (str, optional) – Normally there is no need for user to set this property. For more information, please refer to Name. Default: None.
- Returns
-
a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.
- Return type
-
Tensor
Examples
import paddle x = paddle.rand([2,2,3],'float32') print(x) # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [[[0.45661032, 0.03751532, 0.90191704], # [0.43760979, 0.86177313, 0.65221709]], # [[0.17020577, 0.00259554, 0.28954273], # [0.51795638, 0.27325270, 0.18117726]]]) out1 = paddle.diagonal(x) print(out1) #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [[0.45661032, 0.51795638], # [0.03751532, 0.27325270], # [0.90191704, 0.18117726]]) out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1) print(out2) #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [[0.45661032, 0.86177313], # [0.17020577, 0.27325270]]) out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1) print(out3) #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [[0.43760979], # [0.86177313], # [0.65221709]]) out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2) print(out4) #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [[0.45661032, 0.86177313], # [0.17020577, 0.27325270]])
-
digamma
(
name=None
)
[source]
digamma¶
-
Calculates the digamma of the given input tensor, element-wise.
\[Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }\]- Parameters
-
x (Tensor) – Input Tensor. Must be one of the following types: float32, float64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
Tensor, the digamma of the input Tensor, the shape and data type is the same with input.
Examples
import paddle data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32') res = paddle.digamma(data) print(res) # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [[-0.57721591, 0.03648996], # [ nan , 5.32286835]])
-
dist
(
y,
p=2,
name=None
)
[source]
dist¶
-
This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure of distance. The shapes of x and y must be broadcastable. The definition is as follows, for details, please refer to the numpy’s broadcasting:
Each input has at least one dimension.
Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.
Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be obtained as follows:
1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the tensor with fewer dimensions.
For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the dimension of y.
x (4-D Tensor): 8 x 1 x 6 x 1
y (4-D Tensor): 1 x 7 x 1 x 5
2. Determine the size of each dimension of the output z: choose the maximum value from the two input dimensions.
z (4-D Tensor): 8 x 7 x 6 x 5
If the number of dimensions of the two inputs are the same, the size of the output can be directly determined in step 2. When p takes different values, the norm formula is as follows:
When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.
\[\begin{split}||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}\end{split}\]When p = inf, the inf-norm of z is the maximum element of z.
\[||z||_\infty=\max_i |z_i|\]When p = -inf, the negative-inf-norm of z is the minimum element of z.
\[||z||_{-\infty}=\min_i |z_i|\]Otherwise, the p-norm of z follows the formula,
\[\begin{split}||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}\end{split}\]- Parameters
-
x (Tensor) – 1-D to 6-D Tensor, its data type is float32 or float64.
y (Tensor) – 1-D to 6-D Tensor, its data type is float32 or float64.
p (float, optional) – The norm to be computed, its data type is float32 or float64. Default: 2.
- Returns
-
Tensor that is the p-norm of (x - y).
- Return type
-
Tensor
Examples
import paddle import numpy as np x = paddle.to_tensor(np.array([[3, 3],[3, 3]]), "float32") y = paddle.to_tensor(np.array([[3, 3],[3, 1]]), "float32") out = paddle.dist(x, y, 0) print(out) # out = [1.] out = paddle.dist(x, y, 2) print(out) # out = [2.] out = paddle.dist(x, y, float("inf")) print(out) # out = [2.] out = paddle.dist(x, y, float("-inf")) print(out) # out = [0.]
-
divide
(
y,
name=None
)
[source]
divide¶
-
Divide two tensors element-wise. The equation is:
\[out = x / y\]Note:
paddle.divide
supports broadcasting. If you want know more about broadcasting, please refer to Broadcasting .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
import paddle x = paddle.to_tensor([2, 3, 4], dtype='float64') y = paddle.to_tensor([1, 5, 2], dtype='float64') z = paddle.divide(x, y) print(z) # [2., 0.6, 2.]
-
dot
(
y,
name=None
)
[source]
dot¶
-
This operator calculates inner product for vectors.
Note
Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix is the batch dimension, which means that the vectors of multiple batches are dotted.
- Parameters
-
x (Tensor) – 1-D or 2-D
Tensor
. Its dtype should befloat32
,float64
,int32
,int64
y (Tensor) – 1-D or 2-D
Tensor
. Its dtype soulde befloat32
,float64
,int32
,int64
name (str, optional) – Name of the output. Default is None. It’s used to print debug info for developers. Details: Name
- Returns
-
the calculated result Tensor.
- Return type
-
Tensor
Examples:
import paddle import numpy as np x_data = np.random.uniform(0.1, 1, [10]).astype(np.float32) y_data = np.random.uniform(1, 3, [10]).astype(np.float32) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) z = paddle.dot(x, y) print(z)
-
eig
(
name=None
)
eig¶
-
This API performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
Note
If the matrix is a Hermitian or a real symmetric matrix, please use paddle.linalg.eigh instead, which is much faster. If only eigenvalues is needed, please use paddle.linalg.eigvals instead. If the matrix is of any shape, please use paddle.linalg.svd. This API is only supported on CPU device. The output datatype is always complex for both real and complex input.
- Parameters
-
x (Tensor) – A tensor with shape math:[*, N, N], The data type of the x should be one of
float32
,float64
,compplex64
orcomplex128
.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
A tensor with shape math:[*, N] refers to the eigen values. Eigenvectors(Tensors): A tensor with shape math:[*, N, N] refers to the eigen vectors.
- Return type
-
Eigenvalues(Tensors)
Examples
import paddle import numpy as np paddle.device.set_device("cpu") x_data = np.array([[1.6707249, 7.2249975, 6.5045543], [9.956216, 8.749598, 6.066444 ], [4.4251957, 1.7983172, 0.370647 ]]).astype("float32") x = paddle.to_tensor(x_data) w, v = paddle.linalg.eig(x) print(w) # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False, # [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) , # (0.18518077798279986+0j)], # [(-0.8308237755993192+0j) , (0.3463813401919749+0j) , # (-0.6837005269141947+0j) ], # [(-0.23142567697893396+0j), (0.4944999840400175+0j) , # (0.7058765252952796+0j) ]]) print(v) # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False, # [ (16.50471283351188+0j) , (-5.5034820550763515+0j) , # (-0.21026087843552282+0j)])
-
eigvals
(
name=None
)
eigvals¶
-
Compute the eigenvalues of one or more general matrices.
Warning
The gradient kernel of this operator does not yet developed. If you need back propagation through this operator, please replace it with paddle.linalg.eig.
- Parameters
-
x (Tensor) – A square matrix or a batch of square matrices whose eigenvalues will be computed. Its shape should be [*, M, M], where * is zero or more batch dimensions. Its data type should be float32, float64, complex64, or complex128.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
- A tensor containing the unsorted eigenvalues which has the same batch dimensions with x.
-
The eigenvalues are complex-valued even when x is real.
- Return type
-
Tensor
Examples
import paddle paddle.set_device("cpu") paddle.seed(1234) x = paddle.rand(shape=[3, 3], dtype='float64') # [[0.02773777, 0.93004224, 0.06911496], # [0.24831591, 0.45733623, 0.07717843], # [0.48016702, 0.14235102, 0.42620817]]) print(paddle.linalg.eigvals(x)) # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
-
eigvalsh
(
UPLO='L',
name=None
)
[source]
eigvalsh¶
-
Computes the eigenvalues of a complex Hermitian (conjugate symmetric) or a real symmetric matrix.
- Parameters
-
x (Tensor) – A tensor with shape \([_, M, M]\) , The data type of the input Tensor x should be one of float32, float64, complex64, complex128.
UPLO (str, optional) – Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The tensor eigenvalues in ascending order.
- Return type
-
Tensor
Examples
import numpy as np import paddle x_data = np.array([[1, -2j], [2j, 5]]) x = paddle.to_tensor(x_data) out_value = paddle.eigvalsh(x, UPLO='L') print(out_value) #[0.17157288, 5.82842712]
-
equal
(
y,
name=None
)
[source]
equal¶
-
This layer returns the truth value of \(x == y\) elementwise.
NOTICE: The output of this OP has no gradient.
- Parameters
-
x (Tensor) – Tensor, data type is bool, float32, float64, int32, int64.
y (Tensor) – Tensor, data type is bool, float32, float64, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
output Tensor, it’s shape is the same as the input’s Tensor, and the data type is bool. The result of this op is stop_gradient.
- Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([1, 2, 3]) y = paddle.to_tensor([1, 3, 2]) result1 = paddle.equal(x, y) print(result1) # result1 = [True False False]
-
equal_all
(
y,
name=None
)
[source]
equal_all¶
-
This OP returns the truth value of \(x == y\). True if two inputs have the same elements, False otherwise.
NOTICE: The output of this OP has no gradient.
- Parameters
-
x (Tensor) – Tensor, data type is bool, float32, float64, int32, int64.
y (Tensor) – Tensor, data type is bool, float32, float64, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
output Tensor, data type is bool, value is [False] or [True].
- Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([1, 2, 3]) y = paddle.to_tensor([1, 2, 3]) z = paddle.to_tensor([1, 4, 3]) result1 = paddle.equal_all(x, y) print(result1) # result1 = [True ] result2 = paddle.equal_all(x, z) print(result2) # result2 = [False ]
-
erf
(
name=None
)
[source]
erf¶
-
Erf Operator For more details, see [Error function](https://en.wikipedia.org/wiki/Error_function).
- Equation:
-
\[\begin{split}out = \\frac{2}{\\sqrt{\\pi}} \\int_{0}^{x}e^{- \\eta^{2}}d\\eta\end{split}\]
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float32, float64.
- Returns
-
The output of Erf op, dtype: float32 or float64, the same as the input, shape: the same as the input.
- Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.erf(x) print(out) # [-0.42839236 -0.22270259 0.11246292 0.32862676]
-
exp
(
name=None
)
[source]
exp¶
-
Exp Operator. Computes exp of x element-wise with a natural number \(e\) as the base.
\(out = e^x\)
- Parameters
-
x (Tensor) – Input of Exp operator, an N-D Tensor, with data type float32, float64 or float16.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of Exp operator, a Tensor with shape same as input.
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.exp(x) print(out) # [0.67032005 0.81873075 1.10517092 1.34985881]
-
exp_
(
name=None
)
exp_¶
-
Inplace version of
exp
API, the output Tensor will be inplaced with inputx
. Please refer to api_fluid_layers_exp.
-
expand
(
shape,
name=None
)
[source]
expand¶
-
Expand the input tensor to a given shape.
Both the number of dimensions of
x
and the number of elements inshape
should be less than or equal to 6. The dimension to expand must have a value 1.- Parameters
-
x (Tensor) – The input tensor, its data type is bool, float32, float64, int32 or int64.
shape (list|tuple|Tensor) – The result shape after expanding. The data type is int32. If shape is a list or tuple, all its elements should be integers or 1-D Tensors with the data type int32. If shape is a Tensor, it should be an 1-D Tensor with the data type int32. The value -1 in shape means keeping the corresponding dimension unchanged.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
A Tensor with the given shape. The data type is the same as
x
. - Return type
-
N-D Tensor
Examples
import paddle data = paddle.to_tensor([1, 2, 3], dtype='int32') out = paddle.expand(data, shape=[2, 3]) print(out) # [[1, 2, 3], [1, 2, 3]]
-
expand_as
(
y,
name=None
)
[source]
expand_as¶
-
Expand the input tensor
x
to the same shape as the input tensory
.Both the number of dimensions of
x
andy
must be less than or equal to 6, and the number of dimensions ofy
must be greather than or equal to that ofx
. The dimension to expand must have a value of 1.- Parameters
-
x (Tensor) – The input tensor, its data type is bool, float32, float64, int32 or int64.
y (Tensor) – The input tensor that gives the shape to expand to.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
A Tensor with the same shape as
y
. The data type is the same asx
. - Return type
-
N-D Tensor
Examples
import paddle data_x = paddle.to_tensor([1, 2, 3], 'int32') data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32') out = paddle.expand_as(data_x, data_y) np_out = out.numpy() # [[1, 2, 3], [1, 2, 3]]
-
fill_
(
value
)
fill_¶
-
- Notes:
-
This API is ONLY available in Dygraph mode
This function fill the Tensor with value inplace.
- Parameters
-
x (Tensor) –
x
is the Tensor we want to filled data inplacevalue (Scale) –
value
is the value to be filled in x
- Returns
-
Tensor x filled with value inplace
- Return type
-
x(Tensor)
Examples
import paddle tensor = paddle.to_tensor([0, 1, 2, 3, 4]) tensor.fill_(0) print(tensor.tolist()) #[0, 0, 0, 0, 0]
-
fill_diagonal_
(
value,
offset=0,
wrap=False,
name=None
)
fill_diagonal_¶
-
- Notes:
-
This API is ONLY available in Dygraph mode
This function fill the value into the x Tensor’s diagonal inplace. :param x:
x
is the original Tensor :type x: Tensor :param value:value
is the value to filled in x :type value: Scale :param offset: the offset to the main diagonal. Default: 0 (main diagonal). :type offset: int,optional :param wrap: the diagonal ‘wrapped’ after N columns for tall matrices. :type wrap: bool,optional :param name: Name for the operation (optional, default is None) :type name: str,optional- Returns
-
Tensor with diagonal filled with value.
- Return type
-
Tensor
- Returns type:
-
dtype is same as x Tensor
Examples
-
fill_diagonal_tensor
(
y,
offset=0,
dim1=0,
dim2=1,
name=None
)
fill_diagonal_tensor¶
-
This function fill the source Tensor y into the x Tensor’s diagonal.
- Parameters
-
x (Tensor) –
x
is the original Tensory (Tensor) –
y
is the Tensor to filled in xdim1 (int,optional) – first dimension with respect to which to fill diagonal. Default: 0.
dim2 (int,optional) – second dimension with respect to which to fill diagonal. Default: 1.
offset (int,optional) – the offset to the main diagonal. Default: 0 (main diagonal).
name (str,optional) – Name for the operation (optional, default is None)
- Returns
-
Tensor with diagonal filled with y.
- Return type
-
Tensor
- Returns type:
-
list: dtype is same as x Tensor
Examples
import paddle x = paddle.ones((4, 3)) * 2 y = paddle.ones((3,)) nx = x.fill_diagonal_tensor(y) print(nx.tolist()) #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
-
fill_diagonal_tensor_
(
y,
offset=0,
dim1=0,
dim2=1,
name=None
)
fill_diagonal_tensor_¶
-
- Notes:
-
This API is ONLY available in Dygraph mode
This function fill the source Tensor y into the x Tensor’s diagonal inplace.
- Parameters
-
x (Tensor) –
x
is the original Tensory (Tensor) –
y
is the Tensor to filled in xdim1 (int,optional) – first dimension with respect to which to fill diagonal. Default: 0.
dim2 (int,optional) – second dimension with respect to which to fill diagonal. Default: 1.
offset (int,optional) – the offset to the main diagonal. Default: 0 (main diagonal).
name (str,optional) – Name for the operation (optional, default is None)
- Returns
-
Tensor with diagonal filled with y.
- Return type
-
Tensor
- Returns type:
-
list: dtype is same as x Tensor
Examples
import paddle x = paddle.ones((4, 3)) * 2 y = paddle.ones((3,)) x.fill_diagonal_tensor_(y) print(x.tolist()) #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
-
flatten
(
start_axis=0,
stop_axis=- 1,
name=None
)
[source]
flatten¶
-
Flatten op
Flattens a contiguous range of axes in a tensor according to start_axis and stop_axis.
Note that the output Tensor will share data with origin Tensor and doesn’t have a Tensor copy in
dygraph
mode. If you want to use the Tensor copy version, please use Tensor.clone likeflatten_clone_x = x.flatten().clone()
.For Example:
Case 1: Given X.shape = (3, 100, 100, 4) and start_axis = 1 end_axis = 2 We get: Out.shape = (3, 1000 * 100, 2) Case 2: Given X.shape = (3, 100, 100, 4) and start_axis = 0 stop_axis = -1 We get: Out.shape = (3 * 100 * 100 * 4)
- Parameters
-
x (Tensor) – A tensor of number of dimentions >= axis. A tensor with data type float32, float64, int8, int32, int64, uint8.
start_axis (int) – the start axis to flatten
stop_axis (int) – the stop axis to flatten
name (str, Optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
- A tensor with the contents of the input tensor, with input
-
axes flattened by indicated start axis and end axis. A Tensor with data type same as input x.
- Return type
-
Tensor
- Raises
-
ValueError – If x is not a Tensor.
ValueError – If start_axis or stop_axis is illegal.
Examples
import paddle image_shape=(2, 3, 4, 4) x = paddle.arange(end=image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3]) img = paddle.reshape(x, image_shape) out = paddle.flatten(img, start_axis=1, stop_axis=2) # out shape is [2, 12, 4] # out shares data with img in dygraph mode img[0, 0, 0, 0] = -1 print(out[0, 0, 0]) # [-1]
-
flatten_
(
start_axis=0,
stop_axis=- 1,
name=None
)
flatten_¶
-
Inplace version of
flatten
API, the output Tensor will be inplaced with inputx
. Please refer to api_tensor_flatten.
-
flip
(
axis,
name=None
)
[source]
flip¶
-
Reverse the order of a n-D tensor along given axis in axis.
- Parameters
-
x (Tensor) – A Tensor(or LoDTensor) with shape \([N_1, N_2,..., N_k]\) . The data type of the input Tensor x should be float32, float64, int32, int64, bool.
axis (list|tuple|int) – The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
- Return type
-
Tensor
Examples
import paddle import numpy as np image_shape=(3, 2, 2) x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape) x = x.astype('float32') img = paddle.to_tensor(x) tmp = paddle.flip(img, [0,1]) print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]] out = paddle.flip(tmp,-1) print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
-
floor
(
name=None
)
[source]
floor¶
-
Floor Activation Operator. Computes floor of x element-wise.
\(out = \\lfloor x \\rfloor\)
- Parameters
-
x (Tensor) – Input of Floor operator, an N-D Tensor, with data type float32, float64 or float16.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of Floor operator, a Tensor with shape same as input.
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.floor(x) print(out) # [-1. -1. 0. 0.]
-
floor_
(
name=None
)
floor_¶
-
Inplace version of
floor
API, the output Tensor will be inplaced with inputx
. Please refer to api_fluid_layers_floor.
-
floor_divide
(
y,
name=None
)
[source]
floor_divide¶
-
Floor divide two tensors element-wise. The equation is:
\[out = x // y\]Note:
paddle.floor_divide
supports broadcasting. If you want know more about broadcasting, please refer to Broadcasting .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be int32, int64.
y (Tensor) – the input tensor, it’s data type should be int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. It’s dimension equals with $x$.
Examples
import paddle x = paddle.to_tensor([2, 3, 8, 7]) y = paddle.to_tensor([1, 5, 3, 3]) z = paddle.floor_divide(x, y) print(z) # [2, 0, 2, 2]
-
floor_mod
(
y,
name=None
)
[source]
floor_mod¶
-
Mod two tensors element-wise. The equation is:
\[out = x \% y\]Note:
paddle.remainder
supports broadcasting. If you want know more about broadcasting, please refer to Broadcasting .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
import paddle x = paddle.to_tensor([2, 3, 8, 7]) y = paddle.to_tensor([1, 5, 3, 3]) z = paddle.remainder(x, y) print(z) # [0, 3, 2, 1]
-
gather
(
index,
axis=None,
name=None
)
[source]
gather¶
-
Output is obtained by gathering entries of
axis
ofx
indexed byindex
and concatenate them together.Given: x = [[1, 2], [3, 4], [5, 6]] index = [1, 2] axis=[0] Then: out = [[3, 4], [5, 6]]
- Parameters
-
x (Tensor) – The source input tensor with rank>=1. Supported data type is int32, int64, float32, float64 and uint8 (only for CPU), float16 (only for GPU).
index (Tensor) – The index input tensor with rank=1. Data type is int32 or int64.
axis (Tensor|int, optional) – The axis of input to be gathered, it’s can be int or a Tensor with data type is int32 or int64. The default value is None, if None, the
axis
is 0.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
The output is a tensor with the same rank as
x
. - Return type
-
output (Tensor)
Examples
import paddle input = paddle.to_tensor([[1,2],[3,4],[5,6]]) index = paddle.to_tensor([0,1]) output = paddle.gather(input, index, axis=0) # expected output: [[1,2],[3,4]]
-
gather_nd
(
index,
name=None
)
[source]
gather_nd¶
-
This function is actually a high-dimensional extension of
gather
and supports for simultaneous indexing by multiple axes.index
is a K-dimensional integer tensor, which is regarded as a (K-1)-dimensional tensor ofindex
intoinput
, where each element defines a slice of params:\[output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]\]Obviously,
index.shape[-1] <= input.rank
. And, the output tensor has shapeindex.shape[:-1] + input.shape[index.shape[-1]:]
.Given: x = [[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]] x.shape = (2, 3, 4) * Case 1: index = [[1]] gather_nd(x, index) = [x[1, :, :]] = [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]] * Case 2: index = [[0,2]] gather_nd(x, index) = [x[0, 2, :]] = [8, 9, 10, 11] * Case 3: index = [[1, 2, 3]] gather_nd(x, index) = [x[1, 2, 3]] = [23]
- Parameters
-
x (Tensor) – The input Tensor which it’s data type should be bool, float32, float64, int32, int64.
index (Tensor) – The index input with rank > 1, index.shape[-1] <= input.rank. Its dtype should be int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]
- Return type
-
output (Tensor)
Examples
import paddle x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]]) index = paddle.to_tensor([[0, 1]]) output = paddle.gather_nd(x, index) #[[3, 4]]
- property grad [source]
-
Warning
This API will return the tensor value of the gradient. If you want to get the numpy value of the gradient, you can use
x.grad.numpy()
.Get the Gradient of Current Tensor.
- Returns
-
the gradient of current Tensor
- Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor(5., stop_gradient=False) y = paddle.pow(x, 4.0) y.backward() print("grad of x: {}".format(x.grad)) # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, [500.])
-
gradient
(
)
gradient¶
-
Warning
This API will be deprecated in the future, it is recommended to use
x.grad
which returns the tensor value of the gradient.Get the Gradient of Current Tensor.
- Returns
-
Numpy value of the gradient of current Tensor
- Return type
-
ndarray
Examples
import paddle x = paddle.to_tensor(5., stop_gradient=False) y = paddle.pow(x, 4.0) y.backward() print("grad of x: {}".format(x.gradient())) # [500.]
-
greater_equal
(
y,
name=None
)
[source]
greater_equal¶
-
This OP returns the truth value of \(x >= y\) elementwise, which is equivalent function to the overloaded operator >=.
NOTICE: The output of this OP has no gradient.
- Parameters
-
x (Tensor) – First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
y (Tensor) – Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The tensor storing the output, the output shape is same as input
x
. - Return type
-
Tensor, the output data type is bool
Examples
import paddle x = paddle.to_tensor([1, 2, 3]) y = paddle.to_tensor([1, 3, 2]) result1 = paddle.greater_equal(x, y) print(result1) # result1 = [True False True]
-
greater_than
(
y,
name=None
)
[source]
greater_than¶
-
This OP returns the truth value of \(x > y\) elementwise, which is equivalent function to the overloaded operator >.
NOTICE: The output of this OP has no gradient.
- Parameters
-
x (Tensor) – First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
y (Tensor) – Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The tensor storing the output, the output shape is same as input
x
. - Return type
-
Tensor, the output data type is bool
Examples
import paddle x = paddle.to_tensor([1, 2, 3]) y = paddle.to_tensor([1, 3, 2]) result1 = paddle.greater_than(x, y) print(result1) # result1 = [False False True]
-
histogram
(
bins=100,
min=0,
max=0,
name=None
)
[source]
histogram¶
-
Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max. If min and max are both zero, the minimum and maximum values of the data are used.
- Parameters
-
input (Tensor) – A Tensor(or LoDTensor) with shape \([N_1, N_2,..., N_k]\) . The data type of the input Tensor should be float32, float64, int32, int64.
bins (int) – number of histogram bins
min (int) – lower end of the range (inclusive)
max (int) – upper end of the range (inclusive)
- Returns
-
data type is int64, shape is (nbins,).
- Return type
-
Tensor
Examples
import paddle inputs = paddle.to_tensor([1, 2, 1]) result = paddle.histogram(inputs, bins=4, min=0, max=3) print(result) # [0, 2, 1, 0]
-
imag
(
name=None
)
[source]
imag¶
-
Returns a new tensor containing imaginary values of input tensor.
- Parameters
-
x (Tensor) – the input tensor, its data type could be complex64 or complex128.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
a tensor containing imaginary values of the input tensor.
- Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor( [[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]]) # Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True, # [[(1+6j), (2+5j), (3+4j)], # [(4+3j), (5+2j), (6+1j)]]) imag_res = paddle.imag(x) # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [[6., 5., 4.], # [3., 2., 1.]]) imag_t = x.imag() # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [[6., 5., 4.], # [3., 2., 1.]])
-
increment
(
value=1.0,
name=None
)
[source]
increment¶
-
The OP is usually used for control flow to increment the data of
x
by an amountvalue
. Notice that the number of elements inx
must be equal to 1.- Parameters
-
x (Tensor) – A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
value (float, optional) – The amount to increment the data of
x
. Default: 1.0.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the elementwise-incremented tensor with the same shape and data type as
x
.
Examples
import paddle data = paddle.zeros(shape=[1], dtype='float32') counter = paddle.increment(data) # [1.]
-
index_sample
(
index
)
[source]
index_sample¶
-
IndexSample Layer
IndexSample OP returns the element of the specified location of X, and the location is specified by Index.
Given: X = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]] Index = [[0, 1, 3], [0, 2, 4]] Then: Out = [[1, 2, 4], [6, 8, 10]]
- Parameters
-
x (Tensor) – The source input tensor with 2-D shape. Supported data type is int32, int64, float32, float64.
index (Tensor) – The index input tensor with 2-D shape, first dimension should be same with X. Data type is int32 or int64.
- Returns
-
The output is a tensor with the same shape as index.
- Return type
-
output (Tensor)
Examples
import paddle x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0]], dtype='float32') index = paddle.to_tensor([[0, 1, 2], [1, 2, 3], [0, 0, 0]], dtype='int32') target = paddle.to_tensor([[100, 200, 300, 400], [500, 600, 700, 800], [900, 1000, 1100, 1200]], dtype='int32') out_z1 = paddle.index_sample(x, index) print(out_z1) #[[1. 2. 3.] # [6. 7. 8.] # [9. 9. 9.]] # Use the index of the maximum value by topk op # get the value of the element of the corresponding index in other tensors top_value, top_index = paddle.topk(x, k=2) out_z2 = paddle.index_sample(target, top_index) print(top_value) #[[ 4. 3.] # [ 8. 7.] # [12. 11.]] print(top_index) #[[3 2] # [3 2] # [3 2]] print(out_z2) #[[ 400 300] # [ 800 700] # [1200 1100]]
-
index_select
(
index,
axis=0,
name=None
)
[source]
index_select¶
-
Returns a new tensor which indexes the
input
tensor along dimensionaxis
using the entries inindex
which is a Tensor. The returned tensor has the same number of dimensions as the originalx
tensor. The dim-th dimension has the same size as the length ofindex
; other dimensions have the same size as in thex
tensor.- Parameters
-
x (Tensor) – The input Tensor to be operated. The data of
x
can be one of float32, float64, int32, int64.index (Tensor) – The 1-D Tensor containing the indices to index. The data type of
index
must be int32 or int64.axis (int, optional) – The dimension in which we index. Default: if None, the
axis
is 0.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
A Tensor with same data type as
x
. - Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0]]) index = paddle.to_tensor([0, 1, 1], dtype='int32') out_z1 = paddle.index_select(x=x, index=index) #[[1. 2. 3. 4.] # [5. 6. 7. 8.] # [5. 6. 7. 8.]] out_z2 = paddle.index_select(x=x, index=index, axis=1) #[[ 1. 2. 2.] # [ 5. 6. 6.] # [ 9. 10. 10.]]
- property inplace_version
-
The inplace version of current Tensor. The version number is incremented whenever the current Tensor is modified through an inplace operation.
Notes: This is a read-only property
Examples
import paddle var = paddle.ones(shape=[4, 2, 3], dtype="float32") print(var.inplace_version) # 0 var[1] = 2.2 print(var.inplace_version) # 1
-
inverse
(
name=None
)
[source]
inverse¶
-
Takes the inverse of the square matrix. A square matrix is a matrix with the same number of rows and columns. The input can be a square matrix (2-D Tensor) or batches of square matrices.
- Parameters
-
x (Tensor) – The input tensor. The last two dimensions should be equal. When the number of dimensions is greater than 2, it is treated as batches of square matrix. The data type can be float32 and float64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
- A Tensor holds the inverse of x. The shape and data type
-
is the same as x.
- Return type
-
Tensor
Examples
import paddle mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32') inv = paddle.inverse(mat) print(inv) # [[0.5, 0], [0, 0.5]]
-
is_empty
(
name=None
)
[source]
is_empty¶
-
Test whether a Tensor is empty.
- Parameters
-
x (Tensor) – The Tensor to be tested.
name (str, optional) – The default value is
None
. Normally users don’t have to set this parameter. For more information, please refer to Name .
- Returns
-
A bool scalar Tensor. True if ‘x’ is an empty Tensor.
- Return type
-
Tensor
Examples
import paddle input = paddle.rand(shape=[4, 32, 32], dtype='float32') res = paddle.is_empty(x=input) print("res:", res) # ('res:', Tensor: eager_tmp_1 # - place: CPUPlace # - shape: [1] # - layout: NCHW # - dtype: bool # - data: [0])
- property is_leaf
-
Whether a Tensor is leaf Tensor.
For the Tensor whose stop_gradient is
True
, it will be leaf Tensor.For the Tensor whose stop_gradient is
False
, it will be leaf Tensor too if it is created by user.- Returns
-
Whether a Tensor is leaf Tensor.
- Return type
-
bool
Examples
import paddle x = paddle.to_tensor(1.) print(x.is_leaf) # True x = paddle.to_tensor(1., stop_gradient=True) y = x + 1 print(x.is_leaf) # True print(y.is_leaf) # True x = paddle.to_tensor(1., stop_gradient=False) y = x + 1 print(x.is_leaf) # True print(y.is_leaf) # False
-
is_tensor
(
)
[source]
is_tensor¶
-
This function tests whether input object is a paddle.Tensor.
- Parameters
-
x (object) – Object to test.
- Returns
-
A boolean value. True if ‘x’ is a paddle.Tensor, otherwise False.
Examples
import paddle input1 = paddle.rand(shape=[2, 3, 5], dtype='float32') check = paddle.is_tensor(input1) print(check) #True input3 = [1, 4] check = paddle.is_tensor(input3) print(check) #False
-
isfinite
(
name=None
)
[source]
isfinite¶
-
Return whether every element of input tensor is finite number or not.
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float16, float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the bool result which shows every element of x whether it is finite number or not.
Examples
import paddle x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')]) out = paddle.tensor.isfinite(x) print(out) # [False True True False True False False]
-
isinf
(
name=None
)
[source]
isinf¶
-
Return whether every element of input tensor is +/-INF or not.
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float16, float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the bool result which shows every element of x whether it is +/-INF or not.
Examples
import paddle x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')]) out = paddle.tensor.isinf(x) print(out) # [ True False False True False False False]
-
isnan
(
name=None
)
[source]
isnan¶
-
Return whether every element of input tensor is NaN or not.
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float16, float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, the bool result which shows every element of x whether it is NaN or not.
Examples
import paddle x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')]) out = paddle.tensor.isnan(x) print(out) # [False False False False False True True]
-
item
(
*args
)
item¶
-
Convert element at specific position in Tensor into Python scalars. If the position is not specified, the Tensor must be a single-element Tensor.
- Parameters
-
*args (int) – The input coordinates. If it’s single int, the data in the corresponding order of flattened Tensor will be returned. Default: None, and it must be in the case where Tensor has only one element.
Returns(Python scalar): A Python scalar, whose dtype is corresponds to the dtype of Tensor.
- Raises
-
ValueError – If the Tensor has more than one element, there must be coordinates.
Examples
import paddle x = paddle.to_tensor(1) print(x.item()) #1 print(type(x.item())) #<class 'int'> x = paddle.to_tensor(1.0) print(x.item()) #1.0 print(type(x.item())) #<class 'float'> x = paddle.to_tensor(True) print(x.item()) #True print(type(x.item())) #<class 'bool'> x = paddle.to_tensor(1+1j) print(x.item()) #(1+1j) print(type(x.item())) #<class 'complex'> x = paddle.to_tensor([[1.1, 2.2, 3.3]]) print(x.item(2)) #3.3 print(x.item(0, 2)) #3.3
-
kron
(
y,
name=None
)
[source]
kron¶
-
Kron Operator.
This operator computes the Kronecker product of two tensors, a composite tensor made of blocks of the second tensor scaled by the first.
This operator assumes that the rank of the two tensors, $X$ and $Y$ are the same, if necessary prepending the smallest with ones. If the shape of $X$ is [$r_0$, $r_1$, …, $r_N$] and the shape of $Y$ is [$s_0$, $s_1$, …, $s_N$], then the shape of the output tensor is [$r_{0}s_{0}$, $r_{1}s_{1}$, …, $r_{N}s_{N}$]. The elements are products of elements from $X$ and $Y$.
The equation is: $$ output[k_{0}, k_{1}, …, k_{N}] = X[i_{0}, i_{1}, …, i_{N}] * Y[j_{0}, j_{1}, …, j_{N}] $$
where $$ k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, …, N $$
- Args:
-
- x (Tensor): the fist operand of kron op, data type: float16, float32,
-
float64, int32 or int64.
- y (Tensor): the second operand of kron op, data type: float16,
-
float32, float64, int32 or int64. Its data type should be the same with x.
- name(str, optional): The default value is None. Normally there is no
-
need for user to set this property. For more information, please refer to Name.
- Returns:
-
Tensor: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
- Examples:
-
import paddle x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64') y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64') out = paddle.kron(x, y) print(out) # [[1, 2, 3, 2, 4, 6], # [ 4, 5, 6, 8, 10, 12], # [ 7, 8, 9, 14, 16, 18], # [ 3, 6, 9, 4, 8, 12], # [12, 15, 18, 16, 20, 24], # [21, 24, 27, 28, 32, 36]])
-
less_equal
(
y,
name=None
)
[source]
less_equal¶
-
This OP returns the truth value of \(x <= y\) elementwise, which is equivalent function to the overloaded operator <=.
NOTICE: The output of this OP has no gradient.
- Parameters
-
x (Tensor) – First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
y (Tensor) – Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The tensor storing the output, the output shape is same as input
x
. - Return type
-
Tensor, the output data type is bool
Examples
import paddle x = paddle.to_tensor([1, 2, 3]) y = paddle.to_tensor([1, 3, 2]) result1 = paddle.less_equal(x, y) print(result1) # result1 = [True True False]
-
less_than
(
y,
name=None
)
[source]
less_than¶
-
This OP returns the truth value of \(x < y\) elementwise, which is equivalent function to the overloaded operator <.
NOTICE: The output of this OP has no gradient.
- Parameters
-
x (Tensor) – First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
y (Tensor) – Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The tensor storing the output, the output shape is same as input
x
. - Return type
-
Tensor, the output data type is bool
Examples
import paddle x = paddle.to_tensor([1, 2, 3]) y = paddle.to_tensor([1, 3, 2]) result1 = paddle.less_than(x, y) print(result1) # result1 = [False True False]
-
lgamma
(
name=None
)
[source]
lgamma¶
-
Lgamma Operator.
This operator performs elementwise lgamma for input $X$. \(out = log\Gamma(x)\)
- Parameters
-
x (Tensor) – (Tensor), The input tensor of lgamma op.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
(Tensor), The output tensor of lgamma op.
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.lgamma(x) print(out) # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
-
log
(
name=None
)
[source]
log¶
-
Calculates the natural log of the given input tensor, element-wise.
\[\begin{split}Out = \\ln(x)\end{split}\]- Parameters
-
x (Tensor) – Input Tensor. Must be one of the following types: float32, float64.
name (str|None) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
The natural log of the input Tensor computed element-wise.
- Return type
-
Tensor
Examples
import paddle x = [[2,3,4], [7,8,9]] x = paddle.to_tensor(x, dtype='float32') res = paddle.log(x) # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
-
log10
(
name=None
)
[source]
log10¶
-
Calculates the log to the base 10 of the given input tensor, element-wise.
\[\begin{split}Out = \\log_10_x\end{split}\]- Parameters
-
x (Tensor) – Input tensor must be one of the following types: float32, float64.
name (str|None) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
The log to the base 10 of the input Tensor computed element-wise.
- Return type
-
Tensor
Examples
import paddle # example 1: x is a float x_i = paddle.to_tensor([[1.0], [10.0]]) res = paddle.log10(x_i) # [[0.], [1.0]] # example 2: x is float32 x_i = paddle.full(shape=[1], fill_value=10, dtype='float32') paddle.to_tensor(x_i) res = paddle.log10(x_i) print(res) # [1.0] # example 3: x is float64 x_i = paddle.full(shape=[1], fill_value=10, dtype='float64') paddle.to_tensor(x_i) res = paddle.log10(x_i) print(res) # [1.0]
-
log1p
(
name=None
)
[source]
log1p¶
-
Calculates the natural log of the given input tensor, element-wise.
\[\begin{split}Out = \\ln(x+1)\end{split}\]- Parameters
-
x (Tensor) – Input Tensor. Must be one of the following types: float32, float64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
Tensor, the natural log of the input Tensor computed element-wise.
Examples
import paddle data = paddle.to_tensor([[0], [1]], dtype='float32') res = paddle.log1p(data) # [[0.], [0.6931472]]
-
log2
(
name=None
)
[source]
log2¶
-
Calculates the log to the base 2 of the given input tensor, element-wise.
\[\begin{split}Out = \\log_2x\end{split}\]- Parameters
-
x (Tensor) – Input tensor must be one of the following types: float32, float64.
name (str|None) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
The log to the base 2 of the input Tensor computed element-wise.
- Return type
-
Tensor
Examples
import paddle # example 1: x is a float x_i = paddle.to_tensor([[1.0], [2.0]]) res = paddle.log2(x_i) # [[0.], [1.0]] # example 2: x is float32 x_i = paddle.full(shape=[1], fill_value=2, dtype='float32') paddle.to_tensor(x_i) res = paddle.log2(x_i) print(res) # [1.0] # example 3: x is float64 x_i = paddle.full(shape=[1], fill_value=2, dtype='float64') paddle.to_tensor(x_i) res = paddle.log2(x_i) print(res) # [1.0]
-
logical_and
(
y,
out=None,
name=None
)
[source]
logical_and¶
-
logical_and
operator computes element-wise logical AND onx
andy
, and returnsout
.out
is N-dim booleanTensor
. Each element ofout
is calculated by\[out = x \&\& y\]Note
paddle.logical_and
supports broadcasting. If you want know more about broadcasting, please refer to Broadcasting.- Parameters
-
x (Tensor) – the input tensor, it’s data type should be one of bool, int8, int16, in32, in64, float32, float64.
y (Tensor) – the input tensor, it’s data type should be one of bool, int8, int16, in32, in64, float32, float64.
out (Tensor) – The
Tensor
that specifies the output of the operator, which can be anyTensor
that has been created in the program. The default value is None, and a newTensor
will be created to save the output.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. It’s dimension equals with
x
.
Examples
import paddle x = paddle.to_tensor([True]) y = paddle.to_tensor([True, False, True, False]) res = paddle.logical_and(x, y) print(res) # [True False True False]
-
logical_not
(
out=None,
name=None
)
[source]
logical_not¶
-
logical_not
operator computes element-wise logical NOT onx
, and returnsout
.out
is N-dim booleanVariable
. Each element ofout
is calculated by\[out = !x\]- Parameters
-
x (Tensor) – Operand of logical_not operator. Must be a Tensor of type bool, int8, int16, in32, in64, float32, or float64.
out (Tensor) – The
Tensor
that specifies the output of the operator, which can be anyTensor
that has been created in the program. The default value is None, and a new ``Tensor` will be created to save the output.name (str|None) – The default value is None. Normally there is no need for users to set this property. For more information, please refer to Name.
- Returns
-
n-dim bool LoDTensor or Tensor
- Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([True, False, True, False]) res = paddle.logical_not(x) print(res) # [False True False True]
-
logical_or
(
y,
out=None,
name=None
)
[source]
logical_or¶
-
logical_or
operator computes element-wise logical OR onx
andy
, and returnsout
.out
is N-dim booleanTensor
. Each element ofout
is calculated by\[out = x || y\]Note
paddle.logical_or
supports broadcasting. If you want know more about broadcasting, please refer to Broadcasting.- Parameters
-
x (Tensor) – the input tensor, it’s data type should be one of bool, int8, int16, in32, in64, float32, float64.
y (Tensor) – the input tensor, it’s data type should be one of bool, int8, int16, in32, in64, float32, float64.
out (Tensor) – The
Variable
that specifies the output of the operator, which can be anyTensor
that has been created in the program. The default value is None, and a newTensor
will be created to save the output.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. It’s dimension equals with
x
.
Examples
import paddle import numpy as np x_data = np.array([True, False], dtype=np.bool).reshape(2, 1) y_data = np.array([True, False, True, False], dtype=np.bool).reshape(2, 2) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) res = paddle.logical_or(x, y) print(res) # [[ True True] [ True False]]
-
logical_xor
(
y,
out=None,
name=None
)
[source]
logical_xor¶
-
logical_xor
operator computes element-wise logical XOR onx
andy
, and returnsout
.out
is N-dim booleanTensor
. Each element ofout
is calculated by\[out = (x || y) \&\& !(x \&\& y)\]Note
paddle.logical_xor
supports broadcasting. If you want know more about broadcasting, please refer to Broadcasting.- Parameters
-
x (Tensor) – the input tensor, it’s data type should be one of bool, int8, int16, in32, in64, float32, float64.
y (Tensor) – the input tensor, it’s data type should be one of bool, int8, int16, in32, in64, float32, float64.
out (Tensor) – The
Tensor
that specifies the output of the operator, which can be anyTensor
that has been created in the program. The default value is None, and a newTensor
will be created to save the output.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. It’s dimension equals with
x
.
Examples
import paddle import numpy as np x_data = np.array([True, False], dtype=np.bool).reshape([2, 1]) y_data = np.array([True, False, True, False], dtype=np.bool).reshape([2, 2]) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) res = paddle.logical_xor(x, y) print(res) # [[False, True], [ True, False]]
-
logsumexp
(
axis=None,
keepdim=False,
name=None
)
[source]
logsumexp¶
-
This OP calculates the log of the sum of exponentials of
x
alongaxis
.\[\begin{split}logsumexp(x) = \\log\\sum exp(x)\end{split}\]- Parameters
-
x (Tensor) – The input Tensor with data type float32, float64.
axis (int|list|tuple, optional) – The axis along which to perform logsumexp calculations.
axis
should be int, list(int) or tuple(int). Ifaxis
is a list/tuple of dimension(s), logsumexp is calculated along all element(s) ofaxis
.axis
or element(s) ofaxis
should be in range [-D, D), where D is the dimensions ofx
. Ifaxis
or element(s) ofaxis
is less than 0, it works the same way as \(axis + D\) . Ifaxis
is None, logsumexp is calculated along all elements ofx
. Default is None.keepdim (bool, optional) – Whether to reserve the reduced dimension(s) in the output Tensor. If
keep_dim
is True, the dimensions of the output Tensor is the same asx
except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed inaxis
. Default is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of logsumexp along
axis
ofx
, with the same data type asx
.
Examples:
import paddle x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]]) out1 = paddle.logsumexp(x) # [3.4691226] out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
-
masked_select
(
mask,
name=None
)
[source]
masked_select¶
-
This OP Returns a new 1-D tensor which indexes the input tensor according to the
mask
which is a tensor with data type of bool.- Parameters
-
x (Tensor) – The input Tensor, the data type can be int32, int64, float32, float64.
mask (Tensor) – The Tensor containing the binary mask to index with, it’s data type is bool.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
Returns: A 1-D Tensor which is the same data type as
x
.Examples
import paddle x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [9.0, 10.0, 11.0, 12.0]]) mask = paddle.to_tensor([[True, False, False, False], [True, True, False, False], [True, False, False, False]]) out = paddle.masked_select(x, mask) #[1.0 5.0 6.0 9.0]
-
matmul
(
y,
transpose_x=False,
transpose_y=False,
name=None
)
[source]
matmul¶
-
Applies matrix multiplication to two tensors. matmul follows the complete broadcast rules, and its behavior is consistent with np.matmul.
Currently, the input tensors’ number of dimensions can be any, matmul can be used to achieve the dot, matmul and batchmatmul.
The actual behavior depends on the shapes of \(x\), \(y\) and the flag values of
transpose_x
,transpose_y
. Specifically:If a transpose flag is specified, the last two dimensions of the tensor are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor is ndim-1 of shape \([D]\), then for \(x\) it is treated as \([1, D]\), whereas for \(y\) it is the opposite: It is treated as \([D, 1]\).
The multiplication behavior depends on the dimensions of x and y. Specifically:
If both tensors are 1-dimensional, the dot product result is obtained.
If both tensors are 2-dimensional, the matrix-matrix product is obtained.
If the x is 1-dimensional and the y is 2-dimensional, a 1 is prepended to its dimension in order to conduct the matrix multiply. After the matrix multiply, the prepended dimension is removed.
If the x is 2-dimensional and y is 1-dimensional, the matrix-vector product is obtained.
If both arguments are at least 1-dimensional and at least one argument is N-dimensional (where N > 2), then a batched matrix multiply is obtained. If the first argument is 1-dimensional, a 1 is prepended to its dimension in order to conduct the batched matrix multiply and removed after. If the second argument is 1-dimensional, a 1 is appended to its dimension for the purpose of the batched matrix multiple and removed after. The non-matrix (exclude the last two dimensions) dimensions are broadcasted according the broadcast rule. For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor, out will be a (j, k, n, p) tensor.
- Parameters
-
x (Tensor) – The input tensor which is a Tensor.
y (Tensor) – The input tensor which is a Tensor.
transpose_x (bool) – Whether to transpose \(x\) before multiplication.
transpose_y (bool) – Whether to transpose \(y\) before multiplication.
name (str|None) – A name for this layer(optional). If set None, the layer will be named automatically.
- Returns
-
The output Tensor.
- Return type
-
Tensor
Examples:
import paddle import numpy as np # vector * vector x_data = np.random.random([10]).astype(np.float32) y_data = np.random.random([10]).astype(np.float32) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) z = paddle.matmul(x, y) print(z.numpy().shape) # [1] # matrix * vector x_data = np.random.random([10, 5]).astype(np.float32) y_data = np.random.random([5]).astype(np.float32) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) z = paddle.matmul(x, y) print(z.numpy().shape) # [10] # batched matrix * broadcasted vector x_data = np.random.random([10, 5, 2]).astype(np.float32) y_data = np.random.random([2]).astype(np.float32) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) z = paddle.matmul(x, y) print(z.numpy().shape) # [10, 5] # batched matrix * batched matrix x_data = np.random.random([10, 5, 2]).astype(np.float32) y_data = np.random.random([10, 2, 5]).astype(np.float32) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) z = paddle.matmul(x, y) print(z.numpy().shape) # [10, 5, 5] # batched matrix * broadcasted matrix x_data = np.random.random([10, 1, 5, 2]).astype(np.float32) y_data = np.random.random([1, 3, 2, 5]).astype(np.float32) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) z = paddle.matmul(x, y) print(z.numpy().shape) # [10, 3, 5, 5]
-
matrix_power
(
n,
name=None
)
matrix_power¶
-
Computes the n-th power of a square matrix or a batch of square matrices.
Let \(X\) be a sqaure matrix or a batch of square matrices, \(n\) be an exponent, the equation should be:
\[Out = X ^ {n}\]Specifically,
If n > 0, it returns the matrix or a batch of matrices raised to the power
of n.
If n = 0, it returns the identity matrix or a batch of identity matrices.
If n < 0, it returns the inverse of each matrix (if invertible) raised to
the power of abs(n).
- Parameters
-
x (Tensor) – A square matrix or a batch of square matrices to be raised to power n. Its shape should be [*, M, M], where * is zero or more batch dimensions. Its data type should be float32 or float64.
n (int) – The exponent. It can be any positive, negative integer or zero.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
- The n-th power of the matrix (or the batch of matrices) x. Its
-
data type should be the same as that of x.
- Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([[1, 2, 3], [1, 4, 9], [1, 8, 27]], dtype='float64') print(paddle.linalg.matrix_power(x, 2)) # [[6. , 34. , 102.], # [14. , 90. , 282.], # [36. , 250., 804.]] print(paddle.linalg.matrix_power(x, 0)) # [[1., 0., 0.], # [0., 1., 0.], # [0., 0., 1.]] print(paddle.linalg.matrix_power(x, -2)) # [[ 12.91666667, -12.75000000, 2.83333333 ], # [-7.66666667 , 8. , -1.83333333 ], # [ 1.80555556 , -1.91666667 , 0.44444444 ]]
-
max
(
axis=None,
keepdim=False,
name=None
)
[source]
max¶
-
Computes the maximum of tensor elements over the given axis.
- Parameters
-
x (Tensor) – A tensor, the data type is float32, float64, int32, int64.
axis (int|list|tuple, optional) – The axis along which the maximum is computed. If
None
, compute the maximum over all elements of x and return a Tensor with a single element, otherwise must be in the range \([-x.ndim(x), x.ndim(x))\). If \(axis[i] < 0\), the axis to reduce is \(x.ndim + axis[i]\).keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the x unless
keepdim
is true, default value is False.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
Tensor, results of maximum on the specified axis of input tensor, it’s data type is the same as x.
Examples
import paddle # data_x is a Tensor with shape [2, 4] # the axis is a int element x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9], [0.1, 0.2, 0.6, 0.7]]) result1 = paddle.max(x) print(result1) #[0.9] result2 = paddle.max(x, axis=0) print(result2) #[0.2 0.3 0.6 0.9] result3 = paddle.max(x, axis=-1) print(result3) #[0.9 0.7] result4 = paddle.max(x, axis=1, keepdim=True) print(result4) #[[0.9] # [0.7]] # data_y is a Tensor with shape [2, 2, 2] # the axis is list y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]) result5 = paddle.max(y, axis=[1, 2]) print(result5) #[4. 8.] result6 = paddle.max(y, axis=[0, 1]) print(result6) #[7. 8.]
-
maximum
(
y,
name=None
)
[source]
maximum¶
-
Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
\[out = max(x, y)\]Note:
paddle.maximum
supports broadcasting. If you want know more about broadcasting, please refer to Broadcasting .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
import numpy as np import paddle x = paddle.to_tensor([[1, 2], [7, 8]]) y = paddle.to_tensor([[3, 4], [5, 6]]) res = paddle.maximum(x, y) print(res) # [[3, 4], # [7, 8]] x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]]) y = paddle.to_tensor([3, 0, 4]) res = paddle.maximum(x, y) print(res) # [[3, 2, 4], # [3, 2, 4]] x = paddle.to_tensor([2, 3, 5], dtype='float32') y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32') res = paddle.maximum(x, y) print(res) # [ 2., nan, nan] x = paddle.to_tensor([5, 3, np.inf], dtype='float32') y = paddle.to_tensor([1, -np.inf, 5], dtype='float32') res = paddle.maximum(x, y) print(res) # [ 5., 3., inf.]
-
mean
(
axis=None,
keepdim=False,
name=None
)
[source]
mean¶
-
Computes the mean of the input tensor’s elements along
axis
.- Parameters
-
x (Tensor) – The input Tensor with data type float32, float64.
axis (int|list|tuple, optional) – The axis along which to perform mean calculations.
axis
should be int, list(int) or tuple(int). Ifaxis
is a list/tuple of dimension(s), mean is calculated along all element(s) ofaxis
.axis
or element(s) ofaxis
should be in range [-D, D), where D is the dimensions ofx
. Ifaxis
or element(s) ofaxis
is less than 0, it works the same way as \(axis + D\) . Ifaxis
is None, mean is calculated over all elements ofx
. Default is None.keepdim (bool, optional) – Whether to reserve the reduced dimension(s) in the output Tensor. If
keepdim
is True, the dimensions of the output Tensor is the same asx
except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed inaxis
. Default is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of average along
axis
ofx
, with the same data type asx
.
Examples
import paddle x = paddle.to_tensor([[[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.]], [[13., 14., 15., 16.], [17., 18., 19., 20.], [21., 22., 23., 24.]]]) out1 = paddle.mean(x) # [12.5] out2 = paddle.mean(x, axis=-1) # [[ 2.5 6.5 10.5] # [14.5 18.5 22.5]] out3 = paddle.mean(x, axis=-1, keepdim=True) # [[[ 2.5] # [ 6.5] # [10.5]] # [[14.5] # [18.5] # [22.5]]] out4 = paddle.mean(x, axis=[0, 2]) # [ 8.5 12.5 16.5]
-
median
(
axis=None,
keepdim=False,
name=None
)
[source]
median¶
-
Compute the median along the specified axis.
- Parameters
-
x (Tensor) – The input Tensor, it’s data type can be bool, float16, float32, float64, int32, int64.
axis (int, optional) – The axis along which to perform median calculations
axis
should be int.axis
should be in range [-D, D), where D is the dimensions ofx
. Ifaxis
is less than 0, it works the same way as \(axis + D\). Ifaxis
is None, median is calculated over all elements ofx
. Default is None.keepdim (bool, optional) – Whether to reserve the reduced dimension(s) in the output Tensor. If
keepdim
is True, the dimensions of the output Tensor is the same asx
except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed inaxis
. Default is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of median along
axis
ofx
. If data type ofx
is float64, data type of results will be float64, otherwise data type will be float32.
Examples
import paddle x = paddle.arange(12).reshape([3, 4]) # x is [[0 , 1 , 2 , 3 ], # [4 , 5 , 6 , 7 ], # [8 , 9 , 10, 11]] y1 = paddle.median(x) # y1 is [5.5] y2 = paddle.median(x, axis=0) # y2 is [4., 5., 6., 7.] y3 = paddle.median(x, axis=1) # y3 is [1.5, 5.5, 9.5] y4 = paddle.median(x, axis=0, keepdim=True) # y4 is [[4., 5., 6., 7.]]
-
min
(
axis=None,
keepdim=False,
name=None
)
[source]
min¶
-
Computes the minimum of tensor elements over the given axis
- Parameters
-
x (Tensor) – A tensor, the data type is float32, float64, int32, int64.
axis (int|list|tuple, optional) – The axis along which the minimum is computed. If
None
, compute the minimum over all elements of x and return a Tensor with a single element, otherwise must be in the range \([-x.ndim, x.ndim)\). If \(axis[i] < 0\), the axis to reduce is \(x.ndim + axis[i]\).keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the x unless
keepdim
is true, default value is False.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
Tensor, results of minimum on the specified axis of input tensor, it’s data type is the same as input’s Tensor.
Examples
import paddle # x is a tensor with shape [2, 4] # the axis is a int element x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9], [0.1, 0.2, 0.6, 0.7]]) result1 = paddle.min(x) print(result1) #[0.1] result2 = paddle.min(x, axis=0) print(result2) #[0.1 0.2 0.5 0.7] result3 = paddle.min(x, axis=-1) print(result3) #[0.2 0.1] result4 = paddle.min(x, axis=1, keepdim=True) print(result4) #[[0.2] # [0.1]] # y is a Tensor with shape [2, 2, 2] # the axis is list y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]) result5 = paddle.min(y, axis=[1, 2]) print(result5) #[1. 5.] result6 = paddle.min(y, axis=[0, 1]) print(result6) #[1. 2.]
-
minimum
(
y,
name=None
)
[source]
minimum¶
-
Compare two tensors and returns a new tensor containing the element-wise minima. The equation is:
\[out = min(x, y)\]Note:
paddle.minimum
supports broadcasting. If you want know more about broadcasting, please refer to Broadcasting .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
import numpy as np import paddle x = paddle.to_tensor([[1, 2], [7, 8]]) y = paddle.to_tensor([[3, 4], [5, 6]]) res = paddle.minimum(x, y) print(res) # [[1, 2], # [5, 6]] x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]]) y = paddle.to_tensor([3, 0, 4]) res = paddle.minimum(x, y) print(res) # [[[1, 0, 3], # [1, 0, 3]]] x = paddle.to_tensor([2, 3, 5], dtype='float32') y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32') res = paddle.minimum(x, y) print(res) # [ 1., nan, nan] x = paddle.to_tensor([5, 3, np.inf], dtype='float64') y = paddle.to_tensor([1, -np.inf, 5], dtype='float64') res = paddle.minimum(x, y) print(res) # [ 1., -inf., 5.]
-
mm
(
mat2,
name=None
)
[source]
mm¶
-
Applies matrix multiplication to two tensors.
Currently, the input tensors’ rank can be any, but when the rank of any inputs is bigger than 3, this two inputs’ rank should be equal.
Also note that if the raw tensor \(x\) or \(mat2\) is rank-1 and nontransposed, the prepended or appended dimension \(1\) will be removed after matrix multiplication.
- Parameters
-
input (Tensor) – The input tensor which is a Tensor.
mat2 (Tensor) – The input tensor which is a Tensor.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
The product Tensor.
- Return type
-
Tensor
- ::
-
example 1:
input: [B, …, M, K], mat2: [B, …, K, N] out: [B, …, M, N]
example 2:
input: [B, M, K], mat2: [B, K, N] out: [B, M, N]
example 3:
input: [B, M, K], mat2: [K, N] out: [B, M, N]
example 4:
input: [M, K], mat2: [K, N] out: [M, N]
example 5:
input: [B, M, K], mat2: [K] out: [B, M]
example 6:
input: [K], mat2: [K] out: [1]
Examples
import paddle input = paddle.arange(1, 7).reshape((3, 2)).astype('float32') mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32') out = paddle.mm(input, mat2) print(out) # [[11., 14., 17., 20.], # [23., 30., 37., 44.], # [35., 46., 57., 68.]])
-
mod
(
y,
name=None
)
[source]
mod¶
-
Mod two tensors element-wise. The equation is:
\[out = x \% y\]Note:
paddle.remainder
supports broadcasting. If you want know more about broadcasting, please refer to Broadcasting .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
import paddle x = paddle.to_tensor([2, 3, 8, 7]) y = paddle.to_tensor([1, 5, 3, 3]) z = paddle.remainder(x, y) print(z) # [0, 3, 2, 1]
-
multi_dot
(
name=None
)
multi_dot¶
-
Multi_dot is an operator that calculates multiple matrix multiplications.
Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not support batched inputs.
The input tensor in [x] must be 2-D except for the first and last can be 1-D. If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it is treated as a column vector of shape(n, 1).
If the first and last tensor are 2-D matrix, then the output is also 2-D matrix, otherwise the output is a 1-D vector.
Multi_dot will select the lowest cost multiplication order for calculation. The cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c. Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively, we can calculate the cost of different multiplication orders as follows: - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000 - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000
In this case, multiplying B and C first, then multiply A, which is 5 times faster than sequential calculation.
- Parameters
-
x ([Tensor]) – The input tensors which is a list Tensor.
name (str|None) – A name for this layer(optional). If set None, the layer will be named automatically.
- Returns
-
The output Tensor.
- Return type
-
Tensor
Examples:
import paddle import numpy as np # A * B A_data = np.random.random([3, 4]).astype(np.float32) B_data = np.random.random([4, 5]).astype(np.float32) A = paddle.to_tensor(A_data) B = paddle.to_tensor(B_data) out = paddle.linalg.multi_dot([A, B]) print(out.numpy().shape) # [3, 5] # A * B * C A_data = np.random.random([10, 5]).astype(np.float32) B_data = np.random.random([5, 8]).astype(np.float32) C_data = np.random.random([8, 7]).astype(np.float32) A = paddle.to_tensor(A_data) B = paddle.to_tensor(B_data) C = paddle.to_tensor(C_data) out = paddle.linalg.multi_dot([A, B, C]) print(out.numpy().shape) # [10, 7]
-
multiplex
(
index,
name=None
)
[source]
multiplex¶
-
Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
If the input of this OP contains \(m\) Tensors, where \(I_{i}\) means the i-th input Tensor, \(i\) between \([0,m)\) .
And \(O\) means the output, where \(O[i]\) means the i-th row of the output, then the output satisfies that \(O[i] = I_{index[i]}[i]\) .
For Example:
Given: inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]], [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]], [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]], [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]] index = [[3],[0],[1],[2]] out = [[3,0,3,4], # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4] [0,1,3,4], # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4] [1,2,4,2], # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2] [2,3,3,4]] # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
- Parameters
-
inputs (list) – The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
index (Tensor) – Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
Output of multiplex OP, with data type being float32, float64, int32, int64.
- Return type
-
Tensor
Examples
import paddle import numpy as np img1 = np.array([[1, 2], [3, 4]]).astype(np.float32) img2 = np.array([[5, 6], [7, 8]]).astype(np.float32) inputs = [paddle.to_tensor(img1), paddle.to_tensor(img2)] index = paddle.to_tensor(np.array([[1], [0]]).astype(np.int32)) res = paddle.multiplex(inputs, index) print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
-
multiply
(
y,
name=None
)
[source]
multiply¶
-
Elementwise Mul Operator.
Multiply two tensors element-wise
The equation is:
\(Out = X \\odot Y\)
$X$: a tensor of any dimension.
$Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
There are two cases for this operator:
The shape of $Y$ is the same with $X$.
The shape of $Y$ is a continuous subsequence of $X$.
For case 2:
Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index for broadcasting $Y$ onto $X$.
If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape(Y) = (2, 1) => (2).
For example:
shape(X) = (2, 3, 4, 5), shape(Y) = (,) shape(X) = (2, 3, 4, 5), shape(Y) = (5,) shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2 shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0 shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
- Parameters
-
x (Tensor) – (Variable), Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
y (Tensor) – (Variable), Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (string, optional) – Name of the output. Default is None. It’s used to print debug info for developers. Details: Name
- Returns
-
N-dimension tensor. A location into which the result is stored. It’s dimension equals with x
multiply two tensors element-wise. The equation is:
\[out = x * y\]Note:
paddle.multiply
supports broadcasting. If you would like to know more about broadcasting, please refer to Broadcasting .- param x
-
the input tensor, its data type should be one of float32, float64, int32, int64, bool.
- type x
-
Tensor
- param y
-
the input tensor, its data type should be one of float32, float64, int32, int64, bool.
- type y
-
Tensor
- param name
-
Name for the operation (optional, default is None). For more information, please refer to Name.
- type name
-
str, optional
- returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
import paddle x = paddle.to_tensor([[1, 2], [3, 4]]) y = paddle.to_tensor([[5, 6], [7, 8]]) res = paddle.multiply(x, y) print(res) # [[5, 12], [21, 32]] x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]]) y = paddle.to_tensor([2]) res = paddle.multiply(x, y) print(res) # [[[2, 4, 6], [2, 4, 6]]]
- Return type
-
out (Tensor)
-
mv
(
vec,
name=None
)
[source]
mv¶
-
Performs a matrix-vector product of the matrix x and the vector vec.
- Parameters
-
x (Tensor) – A tensor with shape \([M, N]\) , The data type of the input Tensor x should be one of float32, float64.
vec (Tensor) – A tensor with shape \([N]\) , The data type of the input Tensor x should be one of float32, float64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The tensor which is producted by x and vec.
- Return type
-
Tensor
Examples
# x: [M, N], vec: [N] # paddle.mv(x, vec) # out: [M] import numpy as np import paddle x_data = np.array([[2, 1, 3], [3, 0, 1]]).astype("float64") x = paddle.to_tensor(x_data) vec_data = np.array([3, 5, 1]) vec = paddle.to_tensor(vec_data).astype("float64") out = paddle.mv(x, vec)
-
neg
(
name=None
)
[source]
neg¶
-
This function computes the negative of the Tensor elementwisely.
- Parameters
-
x (Tensor) – Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The negative of input Tensor. The shape and data type are the same with input Tensor.
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.neg(x) print(out) # [0.4 0.2 -0.1 -0.3]
-
nonzero
(
as_tuple=False
)
[source]
nonzero¶
-
Return a tensor containing the indices of all non-zero elements of the input tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension in input, each containing the indices (in that dimension) of all non-zero elements of input. Given a n-Dimensional input tensor with shape [x_1, x_2, …, x_n], If as_tuple is False, we can get a output tensor with shape [z, n], where z is the number of all non-zero elements in the input tensor. If as_tuple is True, we can get a 1-D tensor tuple of length n, and the shape of each 1-D tensor is [z, 1].
- Parameters
-
x (Tensor) – The input tensor variable.
as_tuple (bool) – Return type, Tensor or tuple of Tensor.
- Returns
-
Tensor. The data type is int64.
Examples
import paddle x1 = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 3.0]]) x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0]) out_z1 = paddle.nonzero(x1) print(out_z1) #[[0 0] # [1 1] # [2 2]] out_z1_tuple = paddle.nonzero(x1, as_tuple=True) for out in out_z1_tuple: print(out) #[[0] # [1] # [2]] #[[0] # [1] # [2]] out_z2 = paddle.nonzero(x2) print(out_z2) #[[1] # [3]] out_z2_tuple = paddle.nonzero(x2, as_tuple=True) for out in out_z2_tuple: print(out) #[[1] # [3]]
-
norm
(
p='fro',
axis=None,
keepdim=False,
name=None
)
[source]
norm¶
-
Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean or 2-norm, and in general the p-norm for p > 0) of a given tensor.
Note
This norm API is different from numpy.linalg.norm. This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm. But numpy.linalg.norm only supports 1-D vector or 2-D matrix as input tensor. For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.
- Parameters
-
x (Tensor) – The input tensor could be N-D tensor, and the input data type could be float32 or float64.
p (float|string, optional) – Order of the norm. Supported values are fro, 0, 1, 2, inf, -inf and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm. Default value is fro.
axis (int|list|tuple, optional) – The axis on which to apply norm operation. If axis is int or list(int)/tuple(int) with only one element, the vector norm is computed over the axis. If axis < 0, the dimension to norm operation is rank(input) + axis. If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis. Defalut value is None.
keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result tensor will have fewer dimension than the
input
unlesskeepdim
is true, default value is False.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
results of norm operation on the specified axis of input tensor, it’s data type is the same as input’s Tensor.
- Return type
-
Tensor
Examples
import paddle import numpy as np shape=[2, 3, 4] np_input = np.arange(24).astype('float32') - 12 np_input = np_input.reshape(shape) x = paddle.to_tensor(np_input) #[[[-12. -11. -10. -9.] [ -8. -7. -6. -5.] [ -4. -3. -2. -1.]] # [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.]]] # compute frobenius norm along last two dimensions. out_fro = paddle.norm(x, p='fro', axis=[0,1]) # out_fro.numpy() [17.435596 16.911535 16.7332 16.911535] # compute 2-order vector norm along last dimension. out_pnorm = paddle.norm(x, p=2, axis=-1) #out_pnorm.numpy(): [[21.118711 13.190906 5.477226] # [ 3.7416575 11.224972 19.131126]] # compute 2-order norm along [0,1] dimension. out_pnorm = paddle.norm(x, p=2, axis=[0,1]) #out_pnorm.numpy(): [17.435596 16.911535 16.7332 16.911535] # compute inf-order norm out_pnorm = paddle.norm(x, p=np.inf) #out_pnorm.numpy() = [12.] out_pnorm = paddle.norm(x, p=np.inf, axis=0) #out_pnorm.numpy(): [[12. 11. 10. 9.] [8. 7. 6. 7.] [8. 9. 10. 11.]] # compute -inf-order norm out_pnorm = paddle.norm(x, p=-np.inf) #out_pnorm.numpy(): [0.] out_pnorm = paddle.norm(x, p=-np.inf, axis=0) #out_pnorm.numpy(): [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]
-
not_equal
(
y,
name=None
)
[source]
not_equal¶
-
This OP returns the truth value of \(x != y\) elementwise, which is equivalent function to the overloaded operator !=.
NOTICE: The output of this OP has no gradient.
- Parameters
-
x (Tensor) – First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
y (Tensor) – Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The tensor storing the output, the output shape is same as input
x
. - Return type
-
Tensor, the output data type is bool
Examples
import paddle x = paddle.to_tensor([1, 2, 3]) y = paddle.to_tensor([1, 3, 2]) result1 = paddle.not_equal(x, y) print(result1) # result1 = [False True True]
-
numel
(
name=None
)
[source]
numel¶
-
Returns the number of elements for a tensor, which is a int64 Tensor with shape [1] in static mode or a scalar value in imperative mode
- Parameters
-
x (Tensor) – The input Tensor, it’s data type can be bool, float16, float32, float64, int32, int64.
- Returns
-
The number of elements for the input Tensor.
- Return type
-
Tensor
Examples
import paddle x = paddle.full(shape=[4, 5, 7], fill_value=0, dtype='int32') numel = paddle.numel(x) # 140
-
numpy
(
self: paddle.fluid.core_avx.VarBase
)
array
numpy¶
-
Returns a numpy array shows the value of current Tensor.
- Returns
-
The numpy value of current Tensor.
- Return type
-
ndarray
- Returns type:
-
ndarray: dtype is same as current Tensor
Examples
import paddle import numpy as np data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32') linear = paddle.nn.Linear(32, 64) data = paddle.to_tensor(data) x = linear(data) print(x.numpy())
-
pin_memory
(
self: paddle.fluid.core_avx.VarBase
)
paddle.fluid.core_avx.VarBase
pin_memory¶
-
Returns a copy of this Tensor in pin memory.
If this Tensor is already in pin memory, then no copy is performed and the original Tensor is returned.
Examples
import paddle x = paddle.to_tensor(1.0, place=paddle.CUDAPlace(0)) print(x.place) # CUDAPlace(0) y = x.pin_memory() print(y.place) # CUDAPinnedPlace
-
pow
(
y,
name=None
)
[source]
pow¶
-
Compute the power of tensor elements. The equation is:
\[out = x^{y}\]Note:
paddle.pow
supports broadcasting. If you want know more about broadcasting, please refer to Broadcasting .- Parameters
-
x (Tensor) – An N-D Tensor, the data type is float32, float64, int32 or int64.
y (float|int|Tensor) – If it is an N-D Tensor, its data type should be the same as x.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as x.
Examples
import paddle x = paddle.to_tensor([1, 2, 3], dtype='float32') # example 1: y is a float or int res = paddle.pow(x, 2) print(res) # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [1., 4., 9.]) res = paddle.pow(x, 2.5) print(res) # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [1. , 5.65685415 , 15.58845711]) # example 2: y is a Tensor y = paddle.to_tensor([2], dtype='float32') res = paddle.pow(x, y) print(res) # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [1., 4., 9.])
-
prod
(
axis=None,
keepdim=False,
dtype=None,
name=None
)
[source]
prod¶
-
Compute the product of tensor elements over the given axis.
- Parameters
-
x (Tensor) – The input tensor, its data type should be float32, float64, int32, int64.
axis (int|list|tuple, optional) – The axis along which the product is computed. If
None
, multiply all elements of x and return a Tensor with a single element, otherwise must be in the range \([-x.ndim, x.ndim)\). If \(axis[i]<0\), the axis to reduce is \(x.ndim + axis[i]\). Default is None.dtype (str|np.dtype, optional) – The desired date type of returned tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before operator performed. This is very useful for avoiding data type overflows. The default value is None, the dtype of output is the same as input Tensor x.
keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the input unless keepdim is true. Default is False.
name (string, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
Tensor, result of product on the specified dim of input tensor.
- Raises
-
ValueError – The
dtype
must be float32, float64, int32 or int64.TypeError – The type of
axis
must be int, list or tuple.
Examples
import paddle # the axis is a int element x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9], [0.1, 0.2, 0.6, 0.7]]) out1 = paddle.prod(x) # [0.0002268] out2 = paddle.prod(x, -1) # [0.027 0.0084] out3 = paddle.prod(x, 0) # [0.02 0.06 0.3 0.63] out4 = paddle.prod(x, 0, keepdim=True) # [[0.02 0.06 0.3 0.63]] out5 = paddle.prod(x, 0, dtype='int64') # [0 0 0 0] # the axis is list y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]) out6 = paddle.prod(y, [0, 1]) # [105. 384.] out7 = paddle.prod(y, (1, 2)) # [ 24. 1680.]
-
qr
(
mode='reduced',
name=None
)
qr¶
-
Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).
- Parameters
-
x (Tensor) – The input tensor. Its shape should be […, M, N], where … is zero or more batch dimensions. M and N can be arbitrary positive number. The data type of x should be float32 or float64.
mode (str, optional) – A flag to control the behavior of qr, the default is “reduced”. Suppose x’s shape is […, M, N] and denoting K = min(M, N): If mode = “reduced”, qr op will return reduced Q and R matrices, which means Q’s shape is […, M, K] and R’s shape is […, K, N]. If mode = “complete”, qr op will return complete Q and R matrices, which means Q’s shape is […, M, M] and R’s shape is […, M, N]. If mode = “r”, qr op will only return reduced R matrix, which means R’s shape is […, K, N].
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
If mode = “reduced” or mode = “complete”, qr will return a two tensor-tuple, which represents Q and R. If mode = “r”, qr will return a tensor which represents R.
Examples
import paddle x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64') q, r = paddle.linalg.qr(x) print (q) print (r) # Q = [[-0.16903085, 0.89708523], # [-0.50709255, 0.27602622], # [-0.84515425, -0.34503278]]) # R = [[-5.91607978, -7.43735744], # [ 0. , 0.82807867]]) # one can verify : X = Q * R ;
-
rank
(
)
[source]
rank¶
-
The OP returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
- Parameters
-
input (Tensor) – The input N-D tensor with shape of \([N_1, N_2, ..., N_k]\), the data type is arbitrary.
- Returns
-
The 0-D tensor with the dimensions of the input Tensor.
- Return type
-
Tensor, the output data type is int32.
Examples
import paddle input = paddle.rand((3, 100, 100)) rank = paddle.rank(input) print(rank) # 3
-
real
(
name=None
)
[source]
real¶
-
Returns a new tensor containing real values of the input tensor.
- Parameters
-
x (Tensor) – the input tensor, its data type could be complex64 or complex128.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
a tensor containing real values of the input tensor.
- Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor( [[1 + 6j, 2 + 5j, 3 + 4j], [4 + 3j, 5 + 2j, 6 + 1j]]) # Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True, # [[(1+6j), (2+5j), (3+4j)], # [(4+3j), (5+2j), (6+1j)]]) real_res = paddle.real(x) # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [[1., 2., 3.], # [4., 5., 6.]]) real_t = x.real() # Tensor(shape=[2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [[1., 2., 3.], # [4., 5., 6.]])
-
reciprocal
(
name=None
)
[source]
reciprocal¶
-
Reciprocal Activation Operator.
\(out = \\frac{1}{x}\)
- Parameters
-
x (Tensor) – Input of Reciprocal operator, an N-D Tensor, with data type float32, float64 or float16.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of Reciprocal operator, a Tensor with shape same as input.
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.reciprocal(x) print(out) # [-2.5 -5. 10. 3.33333333]
-
reciprocal_
(
name=None
)
reciprocal_¶
-
Inplace version of
reciprocal
API, the output Tensor will be inplaced with inputx
. Please refer to api_fluid_layers_reciprocal.
-
register_hook
(
hook
)
register_hook¶
-
Registers a backward hook for current Tensor.
The hook will be called every time the gradient Tensor of current Tensor is computed.
The hook should not modify the input gradient Tensor, but it can optionally return a new gradient Tensor which will be used in place of current Tensor’s gradient.
The hook should have the following signature:
hook(grad) -> Tensor or None
- Parameters
-
hook (function) – A backward hook to be registered for Tensor.grad
- Returns
-
A helper object that can be used to remove the registered hook by calling remove() method.
- Return type
-
TensorHookRemoveHelper
Examples
import paddle # hook function return None def print_hook_fn(grad): print(grad) # hook function return Tensor def double_hook_fn(grad): grad = grad * 2 return grad x = paddle.to_tensor([0., 1., 2., 3.], stop_gradient=False) y = paddle.to_tensor([4., 5., 6., 7.], stop_gradient=False) z = paddle.to_tensor([1., 2., 3., 4.]) # one Tensor can register multiple hooks h = x.register_hook(print_hook_fn) x.register_hook(double_hook_fn) w = x + y # register hook by lambda function w.register_hook(lambda grad: grad * 2) o = z.matmul(w) o.backward() # print_hook_fn print content in backward # Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=False, # [2., 4., 6., 8.]) print("w.grad:", w.grad) # w.grad: [1. 2. 3. 4.] print("x.grad:", x.grad) # x.grad: [ 4. 8. 12. 16.] print("y.grad:", y.grad) # y.grad: [2. 4. 6. 8.] # remove hook h.remove()
-
remainder
(
y,
name=None
)
[source]
remainder¶
-
Mod two tensors element-wise. The equation is:
\[out = x \% y\]Note:
paddle.remainder
supports broadcasting. If you want know more about broadcasting, please refer to Broadcasting .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
import paddle x = paddle.to_tensor([2, 3, 8, 7]) y = paddle.to_tensor([1, 5, 3, 3]) z = paddle.remainder(x, y) print(z) # [0, 3, 2, 1]
-
reshape
(
shape,
name=None
)
[source]
reshape¶
-
This operator changes the shape of
x
without changing its data.Note that the output Tensor will share data with origin Tensor and doesn’t have a Tensor copy in
dygraph
mode. If you want to use the Tensor copy version, please use Tensor.clone likereshape_clone_x = x.reshape([-1]).clone()
.Some tricks exist when specifying the target shape.
1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.
2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x.
Here are some examples to explain it.
1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x’s data unchanged.
2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x’s data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.
3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x’s data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.
- Parameters
-
x (Tensor) – An N-D Tensor. The data type is
float32
,float64
,int32
,int64
orbool
shape (list|tuple|Tensor) – Define the target shape. At most one dimension of the target shape can be -1. The data type is
int32
. Ifshape
is a list or tuple, the elements of it should be integers or Tensors with shape [1]. Ifshape
is an Tensor, it should be an 1-D Tensor .name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
A reshaped Tensor with the same data type as
x
. - Return type
-
Tensor
Examples
import numpy as np import paddle x = paddle.rand([2, 4, 6], dtype="float32") positive_four = paddle.full([1], 4, "int32") out = paddle.reshape(x, [-1, 0, 3, 2]) print(out) # the shape is [2,4,3,2]. out = paddle.reshape(x, shape=[positive_four, 12]) print(out) # the shape of out_2 is [4, 12]. shape_tensor = paddle.to_tensor(np.array([8, 6]).astype("int32")) out = paddle.reshape(x, shape=shape_tensor) print(out) # the shape is [8, 6]. # out shares data with x in dygraph mode x[0, 0, 0] = 10. print(out[0, 0]) # the value is [10.]
-
reshape_
(
shape,
name=None
)
[source]
reshape_¶
-
Inplace version of
reshape
API, the output Tensor will be inplaced with inputx
. Please refer to api_paddle_tensor_reshape.
-
reverse
(
axis,
name=None
)
[source]
reverse¶
-
Reverse the order of a n-D tensor along given axis in axis.
- Parameters
-
x (Tensor) – A Tensor(or LoDTensor) with shape \([N_1, N_2,..., N_k]\) . The data type of the input Tensor x should be float32, float64, int32, int64, bool.
axis (list|tuple|int) – The axis(axes) to flip on. Negative indices for indexing from the end are accepted.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
Tensor or LoDTensor calculated by flip layer. The data type is same with input x.
- Return type
-
Tensor
Examples
import paddle import numpy as np image_shape=(3, 2, 2) x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape) x = x.astype('float32') img = paddle.to_tensor(x) tmp = paddle.flip(img, [0,1]) print(tmp) # [[[10,11],[8, 9]], [[6, 7],[4, 5]], [[2, 3],[0, 1]]] out = paddle.flip(tmp,-1) print(out) # [[[11,10],[9, 8]], [[7, 6],[5, 4]], [[3, 2],[1, 0]]]
-
roll
(
shifts,
axis=None,
name=None
)
[source]
roll¶
-
Roll the x tensor along the given axis(axes). With specific ‘shifts’, Elements that roll beyond the last position are re-introduced at the first according to ‘shifts’. If a axis is not specified, the tensor will be flattened before rolling and then restored to the original shape.
- Parameters
-
x (Tensor) – The x tensor as input.
shifts (int|list|tuple) – The number of places by which the elements of the x tensor are shifted.
axis (int|list|tuple|None) – axis(axes) along which to roll.
- Returns
-
A Tensor with same data type as x.
- Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]) out_z1 = paddle.roll(x, shifts=1) print(out_z1) #[[9. 1. 2.] # [3. 4. 5.] # [6. 7. 8.]] out_z2 = paddle.roll(x, shifts=1, axis=0) print(out_z2) #[[7. 8. 9.] # [1. 2. 3.] # [4. 5. 6.]]
-
round
(
name=None
)
[source]
round¶
-
The OP rounds the values in the input to the nearest integer value.
input: x.shape = [4] x.data = [1.2, -0.9, 3.4, 0.9] output: out.shape = [4] out.data = [1., -1., 3., 1.]
- Parameters
-
x (Tensor) – Input of Round operator, an N-D Tensor, with data type float32, float64 or float16.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of Round operator, a Tensor with shape same as input.
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([-0.5, -0.2, 0.6, 1.5]) out = paddle.round(x) print(out) # [-1. -0. 1. 2.]
-
round_
(
name=None
)
round_¶
-
Inplace version of
round
API, the output Tensor will be inplaced with inputx
. Please refer to api_fluid_layers_round.
-
rsqrt
(
name=None
)
[source]
rsqrt¶
-
Rsqrt Activation Operator.
Please make sure input is legal in case of numeric errors.
\(out = \\frac{1}{\\sqrt{x}}\)
- Parameters
-
x (Tensor) – Input of Rsqrt operator, an N-D Tensor, with data type float32, float64 or float16.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of Rsqrt operator, a Tensor with shape same as input.
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([0.1, 0.2, 0.3, 0.4]) out = paddle.rsqrt(x) print(out) # [3.16227766 2.23606798 1.82574186 1.58113883]
-
rsqrt_
(
name=None
)
rsqrt_¶
-
Inplace version of
rsqrt
API, the output Tensor will be inplaced with inputx
. Please refer to api_fluid_layers_rsqrt.
-
scale
(
scale=1.0,
bias=0.0,
bias_after_scale=True,
act=None,
name=None
)
[source]
scale¶
-
Scale operator.
Putting scale and bias to the input Tensor as following:
bias_after_scale
is True:\[Out=scale*X+bias\]bias_after_scale
is False:\[Out=scale*(X+bias)\]- Parameters
-
x (Tensor) – Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
scale (float|Tensor) – The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
bias (float) – The bias to be put on the input.
bias_after_scale (bool) – Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
act (str, optional) – Activation applied to the output such as tanh, softmax, sigmoid, relu.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
Output tensor of scale operator, with shape and data type same as input.
- Return type
-
Tensor
Examples
# scale as a float32 number import paddle data = paddle.randn(shape=[2,3], dtype='float32') res = paddle.scale(data, scale=2.0, bias=1.0)
# scale with parameter scale as a Tensor import paddle data = paddle.randn(shape=[2, 3], dtype='float32') factor = paddle.to_tensor([2], dtype='float32') res = paddle.scale(data, scale=factor, bias=1.0)
-
scale_
(
scale=1.0,
bias=0.0,
bias_after_scale=True,
act=None,
name=None
)
scale_¶
-
Inplace version of
scale
API, the output Tensor will be inplaced with inputx
. Please refer to api_tensor_scale.
-
scatter
(
index,
updates,
overwrite=True,
name=None
)
[source]
scatter¶
-
Scatter Layer Output is obtained by updating the input on selected indices based on updates.
import numpy as np #input: x = np.array([[1, 1], [2, 2], [3, 3]]) index = np.array([2, 1, 0, 1]) # shape of updates should be the same as x # shape of updates with dim > 1 should be the same as input updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]) overwrite = False # calculation: if not overwrite: for i in range(len(index)): x[index[i]] = np.zeros((2)) for i in range(len(index)): if (overwrite): x[index[i]] = updates[i] else: x[index[i]] += updates[i] # output: out = np.array([[3, 3], [6, 6], [1, 1]]) out.shape # [3, 2]
NOTICE: The order in which updates are applied is nondeterministic, so the output will be nondeterministic if index contains duplicates.
- Parameters
-
x (Tensor) – The input N-D Tensor with ndim>=1. Data type can be float32, float64.
index (Tensor) – The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates’s length, and the value in index cannot exceed input’s length.
updates (Tensor) – update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
overwrite (bool) –
The mode that updating the output when there are same indices.
- If True, use the overwrite mode to update the output of the same index,
-
if False, use the accumulate mode to update the output of the same index.Default value is True.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
The output is a Tensor with the same shape as x.
- Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32') index = paddle.to_tensor([2, 1, 0, 1], dtype='int64') updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32') output1 = paddle.scatter(x, index, updates, overwrite=False) # [[3., 3.], # [6., 6.], # [1., 1.]] output2 = paddle.scatter(x, index, updates, overwrite=True) # CPU device: # [[3., 3.], # [4., 4.], # [1., 1.]] # GPU device maybe have two results because of the repeated numbers in index # result 1: # [[3., 3.], # [4., 4.], # [1., 1.]] # result 2: # [[3., 3.], # [2., 2.], # [1., 1.]]
-
scatter_
(
index,
updates,
overwrite=True,
name=None
)
[source]
scatter_¶
-
Inplace version of
scatter
API, the output Tensor will be inplaced with inputx
. Please refer to api_paddle_tensor_scatter.
-
scatter_nd
(
updates,
shape,
name=None
)
[source]
scatter_nd¶
-
Scatter_nd Layer
Output is obtained by scattering the
updates
in a new tensor according toindex
. This op is similar toscatter_nd_add
, except the tensor ofshape
is zero-initialized. Correspondingly,scatter_nd(index, updates, shape)
is equal toscatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)
. Ifindex
has repeated elements, then the corresponding updates are accumulated. Because of the numerical approximation issues, the different order of repeated elements inindex
may cause different results. The specific calculation method can be seenscatter_nd_add
. This op is the inverse of thegather_nd
op.- Parameters
-
index (Tensor) – The index input with ndim > 1 and index.shape[-1] <= len(shape). Its dtype should be int32 or int64 as it is used as indexes.
updates (Tensor) – The updated value of scatter_nd op. Its dtype should be float32, float64. It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
shape (tuple|list) – Shape of output tensor.
name (str|None) – The output Tensor name. If set None, the layer will be named automatically.
- Returns
-
The output is a tensor with the same type as
updates
. - Return type
-
output (Tensor)
Examples
import paddle import numpy as np index_data = np.array([[1, 1], [0, 1], [1, 3]]).astype(np.int64) index = paddle.to_tensor(index_data) updates = paddle.rand(shape=[3, 9, 10], dtype='float32') shape = [3, 5, 9, 10] output = paddle.scatter_nd(index, updates, shape)
-
scatter_nd_add
(
index,
updates,
name=None
)
[source]
scatter_nd_add¶
-
Scatter_nd_add Layer
Output is obtained by applying sparse addition to a single value or slice in a Tensor.
x
is a Tensor with ndim \(R\) andindex
is a Tensor with ndim \(K\) . Thus,index
has shape \([i_0, i_1, ..., i_{K-2}, Q]\) where \(Q \leq R\) .updates
is a Tensor with ndim \(K - 1 + R - Q\) and its shape is \(index.shape[:-1] + x.shape[index.shape[-1]:]\) .According to the \([i_0, i_1, ..., i_{K-2}]\) of
index
, add the correspondingupdates
slice to thex
slice which is obtained by the last one dimension ofindex
.Given: * Case 1: x = [0, 1, 2, 3, 4, 5] index = [[1], [2], [3], [1]] updates = [9, 10, 11, 12] we get: output = [0, 22, 12, 14, 4, 5] * Case 2: x = [[65, 17], [-14, -25]] index = [[], []] updates = [[[-1, -2], [1, 2]], [[3, 4], [-3, -4]]] x.shape = (2, 2) index.shape = (2, 0) updates.shape = (2, 2, 2) we get: output = [[67, 19], [-16, -27]]
- Parameters
-
x (Tensor) – The x input. Its dtype should be int32, int64, float32, float64.
index (Tensor) – The index input with ndim > 1 and index.shape[-1] <= x.ndim. Its dtype should be int32 or int64 as it is used as indexes.
updates (Tensor) – The updated value of scatter_nd_add op, and it must have the same dtype as x. It must have the shape index.shape[:-1] + x.shape[index.shape[-1]:].
name (str|None) – The output tensor name. If set None, the layer will be named automatically.
- Returns
-
The output is a tensor with the same shape and dtype as x.
- Return type
-
output (Tensor)
Examples
import paddle import numpy as np x = paddle.rand(shape=[3, 5, 9, 10], dtype='float32') updates = paddle.rand(shape=[3, 9, 10], dtype='float32') index_data = np.array([[1, 1], [0, 1], [1, 3]]).astype(np.int64) index = paddle.to_tensor(index_data) output = paddle.scatter_nd_add(x, index, updates)
-
set_value
(
value
)
set_value¶
-
- Notes:
-
This API is ONLY available in Dygraph mode
Set a new value for this Variable.
- Parameters
-
value (Variable|np.ndarray) – the new value.
Examples
import paddle.fluid as fluid from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph import Linear import numpy as np data = np.ones([3, 1024], dtype='float32') with fluid.dygraph.guard(): linear = fluid.dygraph.Linear(1024, 4) t = to_variable(data) linear(t) # call with default weight custom_weight = np.random.randn(1024, 4).astype("float32") linear.weight.set_value(custom_weight) # change existing weight out = linear(t) # call with different weight
-
shard_index
(
index_num,
nshards,
shard_id,
ignore_value=- 1
)
[source]
shard_index¶
-
Reset the values of input according to the shard it beloning to. Every value in input must be a non-negative integer, and the parameter index_num represents the integer above the maximum value of input. Thus, all values in input must be in the range [0, index_num) and each value can be regarded as the offset to the beginning of the range. The range is further split into multiple shards. Specifically, we first compute the shard_size according to the following formula, which represents the number of integers each shard can hold. So for the i’th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
shard_size = (index_num + nshards - 1) // nshards
For each value v in input, we reset it to a new value according to the following formula:
v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value
That is, the value v is set to the new offset within the range represented by the shard shard_id if it in the range. Otherwise, we reset it to be ignore_value.
- Parameters
-
input (Tensor) – Input tensor with data type int64 or int32. It’s last dimension must be 1.
index_num (int) – An integer represents the integer above the maximum value of input.
nshards (int) – The number of shards.
shard_id (int) – The index of the current shard.
ignore_value (int) – An integer value out of sharded index range.
- Returns
-
Tensor.
Examples
import paddle label = paddle.to_tensor([[16], [1]], "int64") shard_label = paddle.shard_index(input=label, index_num=20, nshards=2, shard_id=0) print(shard_label) # [[-1], [1]]
-
sign
(
name=None
)
[source]
sign¶
-
This OP returns sign of every element in x: 1 for positive, -1 for negative and 0 for zero.
- Parameters
-
x (Tensor) – The input tensor. The data type can be float16, float32 or float64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
The output sign tensor with identical shape and data type to the input
x
. - Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32') out = paddle.sign(x=x) print(out) # [1.0, 0.0, -1.0, 1.0]
-
sin
(
name=None
)
[source]
sin¶
-
Sine Activation Operator.
\(out = sin(x)\)
- Parameters
-
x (Tensor) – Input of Sin operator, an N-D Tensor, with data type float32, float64 or float16.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of Sin operator, a Tensor with shape same as input.
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.sin(x) print(out) # [-0.38941834 -0.19866933 0.09983342 0.29552021]
-
sinh
(
name=None
)
[source]
sinh¶
-
Sinh Activation Operator.
\(out = sinh(x)\)
- Parameters
-
x (Tensor) – Input of Sinh operator, an N-D Tensor, with data type float32, float64 or float16.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of Sinh operator, a Tensor with shape same as input.
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.sinh(x) print(out) # [-0.41075233 -0.201336 0.10016675 0.30452029]
-
slice
(
axes,
starts,
ends
)
[source]
slice¶
-
This operator produces a slice of
input
along multiple axes. Similar to numpy: https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html Slice usesaxes
,starts
andends
attributes to specify the start and end dimension for each axis in the list of axes and Slice uses this information to slice the input data tensor. If a negative value is passed tostarts
orends
such as \(-i\), it represents the reverse position of the axis \(i-1\) (here 0 is the initial position). If the value passed tostarts
orends
is greater than n (the number of elements in this dimension), it represents n. For slicing to the end of a dimension with unknown size, it is recommended to pass in INT_MAX. The size ofaxes
must be equal tostarts
andends
. Following examples will explain how slice works:Case1: Given: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [1, 0] ends = [2, 3] Then: result = [ [5, 6, 7], ] Case2: Given: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [0, 1] ends = [-1, 1000] # -1 denotes the reverse 0th position of dimension 0. Then: result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
- Parameters
-
input (Tensor) – A
Tensor
. The data type isfloat16
,float32
,float64
,int32
orint64
.axes (list|tuple) – The data type is
int32
. Axes that starts and ends apply to .starts (list|tuple|Tensor) – The data type is
int32
. Ifstarts
is a list or tuple, the elements of it should be integers or Tensors with shape [1]. Ifstarts
is an Tensor, it should be an 1-D Tensor. It represents starting indices of corresponding axis inaxes
.ends (list|tuple|Tensor) – The data type is
int32
. Ifends
is a list or tuple, the elements of it should be integers or Tensors with shape [1]. Ifends
is an Tensor, it should be an 1-D Tensor . It represents ending indices of corresponding axis inaxes
.
- Returns
-
A
Tensor
. The data type is same asinput
. - Return type
-
Tensor
- Raises
-
TypeError – The type of
starts
must be list, tuple or Tensor.TypeError – The type of
ends
must be list, tuple or Tensor.
Examples
import paddle input = paddle.rand(shape=[4, 5, 6], dtype='float32') # example 1: # attr starts is a list which doesn't contain tensor. axes = [0, 1, 2] starts = [-3, 0, 2] ends = [3, 2, 4] sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends) # sliced_1 is input[0:3, 0:2, 2:4]. # example 2: # attr starts is a list which contain tensor. minus_3 = paddle.full([1], -3, "int32") sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends) # sliced_2 is input[0:3, 0:2, 2:4].
-
solve
(
y,
name=None
)
solve¶
-
Computes the solution of a square system of linear equations with a unique solution for input ‘X’ and ‘Y’. Let :math: X be a sqaure matrix or a batch of square matrices, \(Y\) be a vector/matrix or a batch of vectors/matrices, the equation should be:
\[Out = X^-1 * Y\]Specifically, - This system of linear equations has one solution if and only if input ‘X’ is invertible.
- Parameters
-
x (Tensor) – A square matrix or a batch of square matrices. Its shape should be [*, M, M], where * is zero or more batch dimensions. Its data type should be float32 or float64.
y (Tensor) – A vector/matrix or a batch of vectors/matrices. Its shape should be [*, M, K], where * is zero or more batch dimensions. Its data type should be float32 or float64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The solution of a square system of linear equations with a unique solution for input ‘x’ and ‘y’. Its data type should be the same as that of x.
- Return type
-
Tensor
Examples: .. code-block:: python
# a square system of linear equations: # 2*X0 + X1 = 9 # X0 + 2*X1 = 8
import paddle import numpy as np
np_x = np.array([[3, 1],[1, 2]]) np_y = np.array([9, 8]) x = paddle.to_tensor(np_x, dtype=”float64”) y = paddle.to_tensor(np_y, dtype=”float64”) out = paddle.linalg.solve(x, y)
print(out) # [2., 3.])
-
sort
(
axis=- 1,
descending=False,
name=None
)
[source]
sort¶
-
This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the
descending
as True.- Parameters
-
x (Tensor) – An input N-D Tensor with type float32, float64, int16, int32, int64, uint8.
axis (int, optional) – Axis to compute indices along. The effective range is [-R, R), where R is Rank(x). when axis<0, it works the same way as axis+R. Default is 0.
descending (bool, optional) – Descending is a flag, if set to true, algorithm will sort by descending order, else sort by ascending order. Default is false.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
sorted tensor(with the same shape and data type as
x
). - Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([[[5,8,9,5], [0,0,1,7], [6,9,2,4]], [[5,2,4,2], [4,7,7,9], [1,7,0,6]]], dtype='float32') out1 = paddle.sort(x=x, axis=-1) out2 = paddle.sort(x=x, axis=0) out3 = paddle.sort(x=x, axis=1) print(out1) #[[[5. 5. 8. 9.] # [0. 0. 1. 7.] # [2. 4. 6. 9.]] # [[2. 2. 4. 5.] # [4. 7. 7. 9.] # [0. 1. 6. 7.]]] print(out2) #[[[5. 2. 4. 2.] # [0. 0. 1. 7.] # [1. 7. 0. 4.]] # [[5. 8. 9. 5.] # [4. 7. 7. 9.] # [6. 9. 2. 6.]]] print(out3) #[[[0. 0. 1. 4.] # [5. 8. 2. 5.] # [6. 9. 9. 7.]] # [[1. 2. 0. 2.] # [4. 7. 4. 6.] # [5. 7. 7. 9.]]]
-
split
(
num_or_sections,
axis=0,
name=None
)
[source]
split¶
-
Split the input tensor into multiple sub-Tensors.
- Parameters
-
x (Tensor) – A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
num_or_sections (int|list|tuple) – If
num_or_sections
is an int, thennum_or_sections
indicates the number of equal sized sub-Tensors that thex
will be divided into. Ifnum_or_sections
is a list or tuple, the length of it indicates the number of sub-Tensors and the elements in it indicate the sizes of sub-Tensors’ dimension orderly. The length of the list must not be larger than thex
‘s size of specifiedaxis
.axis (int|Tensor, optional) – The axis along which to split, it can be a scalar with type
int
or aTensor
with shape [1] and data typeint32
orint64
. If :math::axis < 0, the axis to split along is \(rank(x) + axis\). Default is 0.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
The list of segmented Tensors.
- Return type
-
list(Tensor)
Example
import paddle # x is a Tensor of shape [3, 9, 5] x = paddle.rand([3, 9, 5]) out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=1) print(out0.shape) # [3, 3, 5] print(out1.shape) # [3, 3, 5] print(out2.shape) # [3, 3, 5] out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, 4], axis=1) print(out0.shape) # [3, 2, 5] print(out1.shape) # [3, 3, 5] print(out2.shape) # [3, 4, 5] out0, out1, out2 = paddle.split(x, num_or_sections=[2, 3, -1], axis=1) print(out0.shape) # [3, 2, 5] print(out1.shape) # [3, 3, 5] print(out2.shape) # [3, 4, 5] # axis is negative, the real axis is (rank(x) + axis)=1 out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=-2) print(out0.shape) # [3, 3, 5] print(out1.shape) # [3, 3, 5] print(out2.shape) # [3, 3, 5]
-
sqrt
(
name=None
)
[source]
sqrt¶
-
Sqrt Activation Operator.
\(out=\\sqrt{x}=x^{1/2}\)
- Note:
-
input value must be greater than or equal to zero.
- Parameters
-
x (Tensor) – Input of Sqrt operator, an N-D Tensor, with data type float32, float64 or float16.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of Sqrt operator, a Tensor with shape same as input.
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([0.1, 0.2, 0.3, 0.4]) out = paddle.sqrt(x) print(out) # [0.31622777 0.4472136 0.54772256 0.63245553]
-
sqrt_
(
name=None
)
sqrt_¶
-
Inplace version of
sqrt
API, the output Tensor will be inplaced with inputx
. Please refer to api_fluid_layers_sqrt.
-
square
(
name=None
)
[source]
square¶
-
The OP square each elements of the inputs.
\(out = x^2\)
- Parameters
-
x (Tensor) – Input of Square operator, an N-D Tensor, with data type float32, float64 or float16.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of Square operator, a Tensor with shape same as input.
- Return type
-
out (Tensor)
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.square(x) print(out) # [0.16 0.04 0.01 0.09]
-
squeeze
(
axis=None,
name=None
)
[source]
squeeze¶
-
This OP will squeeze the dimension(s) of size 1 of input tensor x’s shape.
Note that the output Tensor will share data with origin Tensor and doesn’t have a Tensor copy in
dygraph
mode. If you want to use the Tensor copy version, please use Tensor.clone likesqueeze_clone_x = x.squeeze().clone()
.If axis is provided, it will remove the dimension(s) by given axis that of size 1. If the dimension of given axis is not of size 1, the dimension remain unchanged. If axis is not provided, all dims equal of size 1 will be removed.
Case1: Input: x.shape = [1, 3, 1, 5] # If axis is not provided, all dims equal of size 1 will be removed. axis = None Output: out.shape = [3, 5] Case2: Input: x.shape = [1, 3, 1, 5] # If axis is provided, it will remove the dimension(s) by given axis that of size 1. axis = 0 Output: out.shape = [3, 1, 5] Case4: Input: x.shape = [1, 3, 1, 5] # If the dimension of one given axis (3) is not of size 1, the dimension remain unchanged. axis = [0, 2, 3] Output: out.shape = [3, 5] Case4: Input: x.shape = [1, 3, 1, 5] # If axis is negative, axis = axis + ndim (number of dimensions in x). axis = [-2] Output: out.shape = [1, 3, 5]
- Parameters
-
x (Tensor) – The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64.
axis (int|list|tuple, optional) – An integer or list/tuple of integers, indicating the dimensions to be squeezed. Default is None. The range of axis is \([-ndim(x), ndim(x))\). If axis is negative, \(axis = axis + ndim(x)\). If axis is None, all the dimensions of x of size 1 will be removed.
name (str, optional) – Please refer to Name, Default None.
- Returns
-
Squeezed Tensor with the same data type as input Tensor.
- Return type
-
Tensor
Examples
import paddle x = paddle.rand([5, 1, 10]) output = paddle.squeeze(x, axis=1) print(x.shape) # [5, 1, 10] print(output.shape) # [5, 10] # output shares data with x in dygraph mode x[0, 0, 0] = 10. print(output[0, 0]) # [10.]
-
squeeze_
(
axis=None,
name=None
)
[source]
squeeze_¶
-
Inplace version of
squeeze
API, the output Tensor will be inplaced with inputx
. Please refer to api_paddle_tensor_squeeze.
-
stack
(
axis=0,
name=None
)
[source]
stack¶
-
This OP stacks all the input tensors
x
alongaxis
dimemsion. All tensors must be of the same shape and same dtype.For example, given N tensors of shape [A, B], if
axis == 0
, the shape of stacked tensor is [N, A, B]; ifaxis == 1
, the shape of stacked tensor is [A, N, B], etc.Case 1: Input: x[0].shape = [1, 2] x[0].data = [ [1.0 , 2.0 ] ] x[1].shape = [1, 2] x[1].data = [ [3.0 , 4.0 ] ] x[2].shape = [1, 2] x[2].data = [ [5.0 , 6.0 ] ] Attrs: axis = 0 Output: Out.dims = [3, 1, 2] Out.data =[ [ [1.0, 2.0] ], [ [3.0, 4.0] ], [ [5.0, 6.0] ] ] Case 2: Input: x[0].shape = [1, 2] x[0].data = [ [1.0 , 2.0 ] ] x[1].shape = [1, 2] x[1].data = [ [3.0 , 4.0 ] ] x[2].shape = [1, 2] x[2].data = [ [5.0 , 6.0 ] ] Attrs: axis = 1 or axis = -2 # If axis = -2, axis = axis+ndim(x[0])+1 = -2+2+1 = 1. Output: Out.shape = [1, 3, 2] Out.data =[ [ [1.0, 2.0] [3.0, 4.0] [5.0, 6.0] ] ]
- Parameters
-
x (list[Tensor]|tuple[Tensor]) – Input
x
can be alist
ortuple
of tensors, the Tensors inx
must be of the same shape and dtype. Supported data types: float32, float64, int32, int64.axis (int, optional) – The axis along which all inputs are stacked.
axis
range is[-(R+1), R+1)
, whereR
is the number of dimensions of the first input tensorx[0]
. Ifaxis < 0
,axis = axis+R+1
. The default value of axis is 0.name (str, optional) – Please refer to Name, Default None.
- Returns
-
The stacked tensor with same data type as input.
- Return type
-
Tensor
Example
import paddle x1 = paddle.to_tensor([[1.0, 2.0]]) x2 = paddle.to_tensor([[3.0, 4.0]]) x3 = paddle.to_tensor([[5.0, 6.0]]) out = paddle.stack([x1, x2, x3], axis=0) print(out.shape) # [3, 1, 2] print(out) # [[[1., 2.]], # [[3., 4.]], # [[5., 6.]]]
-
stanh
(
scale_a=0.67,
scale_b=1.7159,
name=None
)
[source]
stanh¶
-
stanh activation.
\[out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}\]- Parameters
-
x (Tensor) – The input Tensor with data type float32, float64.
scale_a (float, optional) – The scale factor a of the input. Default is 0.67.
scale_b (float, optional) – The scale factor b of the output. Default is 1.7159.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
A Tensor with the same data type and shape as
x
.
Examples
import paddle x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0]) out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]
-
std
(
axis=None,
unbiased=True,
keepdim=False,
name=None
)
[source]
std¶
-
Computes the standard-deviation of
x
alongaxis
.- Parameters
-
x (Tensor) – The input Tensor with data type float32, float64.
axis (int|list|tuple, optional) – The axis along which to perform standard-deviation calculations.
axis
should be int, list(int) or tuple(int). Ifaxis
is a list/tuple of dimension(s), standard-deviation is calculated along all element(s) ofaxis
.axis
or element(s) ofaxis
should be in range [-D, D), where D is the dimensions ofx
. Ifaxis
or element(s) ofaxis
is less than 0, it works the same way as \(axis + D\) . Ifaxis
is None, standard-deviation is calculated over all elements ofx
. Default is None.unbiased (bool, optional) – Whether to use the unbiased estimation. If
unbiased
is True, the standard-deviation is calculated via the unbiased estimator. Ifunbiased
is True, the divisor used in the computation is \(N - 1\), where \(N\) represents the number of elements alongaxis
, otherwise the divisor is \(N\). Default is True.keepdim (bool, optional) – Whether to reserve the reduced dimension(s) in the output Tensor. If
keepdim
is True, the dimensions of the output Tensor is the same asx
except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed inaxis
. Default is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of standard-deviation along
axis
ofx
, with the same data type asx
.
Examples
import paddle x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]]) out1 = paddle.std(x) # [1.63299316] out2 = paddle.std(x, axis=1) # [1. 2.081666]
-
strided_slice
(
axes,
starts,
ends,
strides,
name=None
)
[source]
strided_slice¶
-
This operator produces a slice of
x
along multiple axes. Similar to numpy: https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html Slice usesaxes
,starts
andends
attributes to specify the start and end dimension for each axis in the list of axes and Slice uses this information to slice the input data tensor. If a negative value is passed tostarts
orends
such as \(-i\), it represents the reverse position of the axis \(i-1\) th(here 0 is the initial position). Thestrides
represents steps of slicing and if thestrides
is negative, slice operation is in the opposite direction. If the value passed tostarts
orends
is greater than n (the number of elements in this dimension), it represents n. For slicing to the end of a dimension with unknown size, it is recommended to pass in INT_MAX. The size ofaxes
must be equal tostarts
,ends
andstrides
. Following examples will explain how strided_slice works:Case1: Given: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [1, 0] ends = [2, 3] strides = [1, 1] Then: result = [ [5, 6, 7], ] Case2: Given: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [0, 1] ends = [2, 0] strides = [1, -1] Then: result = [ [8, 7, 6], ] Case3: Given: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [0, 1] ends = [-1, 1000] strides = [1, 3] Then: result = [ [2], ]
- Parameters
-
x (Tensor) – An N-D
Tensor
. The data type isfloat32
,float64
,int32
orint64
.axes (list|tuple) – The data type is
int32
. Axes that starts and ends apply to. It’s optional. If it is not provides, it will be treated as \([0,1,...,len(starts)-1]\).starts (list|tuple|Tensor) – The data type is
int32
. Ifstarts
is a list or tuple, the elements of it should be integers or Tensors with shape [1]. Ifstarts
is an Tensor, it should be an 1-D Tensor. It represents starting indices of corresponding axis inaxes
.ends (list|tuple|Tensor) – The data type is
int32
. Ifends
is a list or tuple, the elements of it should be integers or Tensors with shape [1]. Ifends
is an Tensor, it should be an 1-D Tensor . It represents ending indices of corresponding axis inaxes
.strides (list|tuple|Tensor) – The data type is
int32
. Ifstrides
is a list or tuple, the elements of it should be integers or Tensors with shape [1]. Ifstrides
is an Tensor, it should be an 1-D Tensor . It represents slice step of corresponding axis inaxes
.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
A
Tensor
with the same dimension asx
. The data type is same asx
. - Return type
-
Tensor
Examples
import paddle x = paddle.zeros(shape=[3,4,5,6], dtype="float32") # example 1: # attr starts is a list which doesn't contain Tensor. axes = [1, 2, 3] starts = [-3, 0, 2] ends = [3, 2, 4] strides_1 = [1, 1, 1] strides_2 = [1, 1, 2] sliced_1 = paddle.strided_slice(x, axes=axes, starts=starts, ends=ends, strides=strides_1) # sliced_1 is x[:, 1:3:1, 0:2:1, 2:4:1]. # example 2: # attr starts is a list which contain tensor Tensor. minus_3 = paddle.full(shape=[1], fill_value=-3, dtype='int32') sliced_2 = paddle.strided_slice(x, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2) # sliced_2 is x[:, 1:3:1, 0:2:1, 2:4:2].
-
subtract
(
y,
name=None
)
[source]
subtract¶
-
Substract two tensors element-wise. The equation is:
\[out = x - y\]Note:
paddle.subtract
supports broadcasting. If you want know more about broadcasting, please refer to Broadcasting .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
import numpy as np import paddle x = paddle.to_tensor([[1, 2], [7, 8]]) y = paddle.to_tensor([[5, 6], [3, 4]]) res = paddle.subtract(x, y) print(res) # [[-4, -4], # [4, 4]] x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]]) y = paddle.to_tensor([1, 0, 4]) res = paddle.subtract(x, y) print(res) # [[[ 0, 2, -1], # [ 0, 2, -1]]] x = paddle.to_tensor([2, np.nan, 5], dtype='float32') y = paddle.to_tensor([1, 4, np.nan], dtype='float32') res = paddle.subtract(x, y) print(res) # [ 1., nan, nan] x = paddle.to_tensor([5, np.inf, -np.inf], dtype='float64') y = paddle.to_tensor([1, 4, 5], dtype='float64') res = paddle.subtract(x, y) print(res) # [ 4., inf., -inf.]
-
subtract_
(
y,
name=None
)
subtract_¶
-
Inplace version of
subtract
API, the output Tensor will be inplaced with inputx
. Please refer to api_tensor_subtract.
-
sum
(
axis=None,
dtype=None,
keepdim=False,
name=None
)
[source]
sum¶
-
Computes the sum of tensor elements over the given dimension.
- Parameters
-
x (Tensor) – An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
axis (int|list|tuple, optional) – The dimensions along which the sum is performed. If
None
, sum all elements ofx
and return a Tensor with a single element, otherwise must be in the range \([-rank(x), rank(x))\). If \(axis[i] < 0\), the dimension to reduce is \(rank + axis[i]\).dtype (str, optional) – The dtype of output Tensor. The default value is None, the dtype of output is the same as input Tensor x.
keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result Tensor will have one fewer dimension than the
x
unlesskeepdim
is true, default value is False.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
Results of summation operation on the specified axis of input Tensor x, if x.dtype=’bool’, x.dtype=’int32’, it’s data type is ‘int64’, otherwise it’s data type is the same as x.
- Return type
-
Tensor
- Raises
-
TypeError – The type of
axis
must be int, list or tuple.
Examples
import paddle # x is a Tensor with following elements: # [[0.2, 0.3, 0.5, 0.9] # [0.1, 0.2, 0.6, 0.7]] # Each example is followed by the corresponding output tensor. x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9], [0.1, 0.2, 0.6, 0.7]]) out1 = paddle.sum(x) # [3.5] out2 = paddle.sum(x, axis=0) # [0.3, 0.5, 1.1, 1.6] out3 = paddle.sum(x, axis=-1) # [1.9, 1.6] out4 = paddle.sum(x, axis=1, keepdim=True) # [[1.9], [1.6]] # y is a Tensor with shape [2, 2, 2] and elements as below: # [[[1, 2], [3, 4]], # [[5, 6], [7, 8]]] # Each example is followed by the corresponding output tensor. y = paddle.to_tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) out5 = paddle.sum(y, axis=[1, 2]) # [10, 26] out6 = paddle.sum(y, axis=[0, 1]) # [16, 20] # x is a Tensor with following elements: # [[True, True, True, True] # [False, False, False, False]] # Each example is followed by the corresponding output tensor. x = paddle.to_tensor([[True, True, True, True], [False, False, False, False]]) out7 = paddle.sum(x) # [4] out8 = paddle.sum(x, axis=0) # [1, 1, 1, 1] out9 = paddle.sum(x, axis=1) # [4, 0]
-
t
(
name=None
)
[source]
t¶
-
Transpose <=2-D tensor. 0-D and 1-D tensors are returned as it is and 2-D tensor is equal to the paddle.transpose function which perm dimensions set 0 and 1.
- Parameters
-
input (Tensor) – The input Tensor. It is a N-D (N<=2) Tensor of data types float16, float32, float64, int32.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
- Return type
-
Tensor
For Example:
# Example 1 (0-D tensor) x = tensor([0.79]) paddle.t(x) = tensor([0.79]) # Example 2 (1-D tensor) x = tensor([0.79, 0.84, 0.32]) paddle.t(x) = tensor([0.79, 0.84, 0.32]) # Example 3 (2-D tensor) x = tensor([0.79, 0.84, 0.32], [0.64, 0.14, 0.57]) paddle.t(x) = tensor([0.79, 0.64], [0.84, 0.14], [0.32, 0.57])
Examples:
import paddle x = paddle.ones(shape=[2, 3], dtype='int32') x_transposed = paddle.t(x) print(x_transposed.shape) # [3, 2]
-
tanh
(
name=None
)
[source]
tanh¶
-
Tanh Activation Operator.
\[\begin{split}out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\end{split}\]- Parameters
-
x (Tensor) – Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Output of Tanh operator, a Tensor with same data type and shape as input.
Examples
import paddle x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3]) out = paddle.tanh(x) print(out) # [-0.37994896 -0.19737532 0.09966799 0.29131261]
-
tanh_
(
name=None
)
[source]
tanh_¶
-
Inplace version of
tanh
API, the output Tensor will be inplaced with inputx
. Please refer to api_tensor_tanh.
-
tensordot
(
y,
axes=2,
name=None
)
[source]
tensordot¶
-
This function computes a contraction, which sum the product of elements from two tensors along the given axes.
- Parameters
-
x (Tensor) – The left tensor for contraction with data type
float32
orfloat64
.y (Tensor) – The right tensor for contraction with the same data type as
x
.axes (int|tuple|list|Tensor, optional) –
The axes to contract for
x
andy
, defaulted to integer2
.It could be a non-negative integer
n
, in which the function will sum over the lastn
axes ofx
and the firstn
axes ofy
in order.It could be a 1-d tuple or list with data type
int
, in whichx
andy
will be contracted along the same given axes. For example,axes
=[0, 1] applies contraction along the first two axes forx
and the first two axes fory
.It could be a tuple or list containing one or two 1-d tuple|list|Tensor with data type
int
. When containing one tuple|list|Tensor, the data in tuple|list|Tensor specified the same axes forx
andy
to contract. When containing two tuple|list|Tensor, the first will be applied tox
and the second toy
. When containing more than two tuple|list|Tensor, only the first two axis sequences will be used while the others will be ignored.It could be a tensor, in which the
axes
tensor will be translated to a python list and applied the same rules described above to determine the contraction axes. Note that theaxes
with Tensor type is ONLY available in Dygraph mode.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
The contraction result with the same data type as
x
andy
. In general, \(output.ndim = x.ndim + y.ndim - 2 \times n_{axes}\), where \(n_{axes}\) denotes the number of axes to be contracted. - Return type
-
Output (Tensor)
Notes
This function supports tensor broadcast, the size in the corresponding dimensions of
x
andy
should be equal, or applies to the broadcast rules.This function also supports axes expansion, when the two given axis sequences for
x
andy
are of different lengths, the shorter sequence will expand the same axes as the longer one at the end. For example, ifaxes
=[[0, 1, 2, 3], [1, 0]], the axis sequence forx
is [0, 1, 2, 3], while the corresponding axis sequences fory
will be expanded from [1, 0] to [1, 0, 2, 3].
Examples
import paddle data_type = 'float64' # For two 2-d tensor x and y, the case axes=0 is equivalent to outer product. # Note that tensordot supports empty axis sequence, so all the axes=0, axes=[], axes=[[]], and axes=[[],[]] are equivalent cases. x = paddle.arange(4, dtype=data_type).reshape([2, 2]) y = paddle.arange(4, dtype=data_type).reshape([2, 2]) z = paddle.tensordot(x, y, axes=0) # z = [[[[0., 0.], # [0., 0.]], # # [[0., 1.], # [2., 3.]]], # # # [[[0., 2.], # [4., 6.]], # # [[0., 3.], # [6., 9.]]]] # For two 1-d tensor x and y, the case axes=1 is equivalent to inner product. x = paddle.arange(10, dtype=data_type) y = paddle.arange(10, dtype=data_type) z1 = paddle.tensordot(x, y, axes=1) z2 = paddle.dot(x, y) # z1 = z2 = [285.] # For two 2-d tensor x and y, the case axes=1 is equivalent to matrix multiplication. x = paddle.arange(6, dtype=data_type).reshape([2, 3]) y = paddle.arange(12, dtype=data_type).reshape([3, 4]) z1 = paddle.tensordot(x, y, axes=1) z2 = paddle.matmul(x, y) # z1 = z2 = [[20., 23., 26., 29.], # [56., 68., 80., 92.]] # When axes is a 1-d int list, x and y will be contracted along the same given axes. # Note that axes=[1, 2] is equivalent to axes=[[1, 2]], axes=[[1, 2], []], axes=[[1, 2], [1]], and axes=[[1, 2], [1, 2]]. x = paddle.arange(24, dtype=data_type).reshape([2, 3, 4]) y = paddle.arange(36, dtype=data_type).reshape([3, 3, 4]) z = paddle.tensordot(x, y, axes=[1, 2]) # z = [[506. , 1298., 2090.], # [1298., 3818., 6338.]] # When axes is a list containing two 1-d int list, the first will be applied to x and the second to y. x = paddle.arange(60, dtype=data_type).reshape([3, 4, 5]) y = paddle.arange(24, dtype=data_type).reshape([4, 3, 2]) z = paddle.tensordot(x, y, axes=([1, 0], [0, 1])) # z = [[4400., 4730.], # [4532., 4874.], # [4664., 5018.], # [4796., 5162.], # [4928., 5306.]] # Thanks to the support of axes expansion, axes=[[0, 1, 3, 4], [1, 0, 3, 4]] can be abbreviated as axes= [[0, 1, 3, 4], [1, 0]]. x = paddle.arange(720, dtype=data_type).reshape([2, 3, 4, 5, 6]) y = paddle.arange(720, dtype=data_type).reshape([3, 2, 4, 5, 6]) z = paddle.tensordot(x, y, axes=[[0, 1, 3, 4], [1, 0]]) # z = [[23217330., 24915630., 26613930., 28312230.], # [24915630., 26775930., 28636230., 30496530.], # [26613930., 28636230., 30658530., 32680830.], # [28312230., 30496530., 32680830., 34865130.]]
-
tile
(
repeat_times,
name=None
)
[source]
tile¶
-
Construct a new Tensor by repeating
x
the number of times given byrepeat_times
. After tiling, the value of the i’th dimension of the output is equal tox.shape[i]*repeat_times[i]
.Both the number of dimensions of
x
and the number of elements inrepeat_times
should be less than or equal to 6.- Parameters
-
x (Tensor) – The input tensor, its data type should be bool, float32, float64, int32 or int64.
repeat_times (Tensor|tuple|list) – The number of repeating times. If repeat_times is a list or tuple, all its elements should be integers or 1-D Tensors with the data type int32. If repeat_times is a Tensor, it should be an 1-D Tensor with the data type int32.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. The data type is the same as
x
.
Examples
import paddle data = paddle.to_tensor([1, 2, 3], dtype='int32') out = paddle.tile(data, repeat_times=[2, 1]) np_out = out.numpy() # [[1, 2, 3], [1, 2, 3]] out = paddle.tile(data, repeat_times=[2, 2]) np_out = out.numpy() # [[1, 2, 3, 1, 2, 3], [1, 2, 3, 1, 2, 3]] repeat_times = paddle.to_tensor([2, 1], dtype='int32') out = paddle.tile(data, repeat_times=repeat_times) np_out = out.numpy() # [[1, 2, 3], [1, 2, 3]]
-
tolist
(
)
[source]
tolist¶
-
- Notes:
-
This API is ONLY available in Dygraph mode
This function translate the paddle.Tensor to python list.
- Parameters
-
x (Tensor) –
x
is the Tensor we want to translate to list - Returns
-
A list that contain the same value of current Tensor.
- Return type
-
list
- Returns type:
-
list: dtype is same as current Tensor
Examples
import paddle t = paddle.to_tensor([0,1,2,3,4]) expectlist = t.tolist() print(expectlist) #[0, 1, 2, 3, 4] expectlist = paddle.tolist(t) print(expectlist) #[0, 1, 2, 3, 4]
-
topk
(
k,
axis=None,
largest=True,
sorted=True,
name=None
)
[source]
topk¶
-
This OP is used to find values and indices of the k largest or smallest at the optional axis. If the input is a 1-D Tensor, finds the k largest or smallest values and indices. If the input is a Tensor with higher rank, this operator computes the top k values and indices along the
axis
.- Parameters
-
x (Tensor) – Tensor, an input N-D Tensor with type float32, float64, int32, int64.
k (int, Tensor) – The number of top elements to look for along the axis.
axis (int, optional) – Axis to compute indices along. The effective range is [-R, R), where R is x.ndim. when axis < 0, it works the same way as axis + R. Default is -1.
largest (bool, optional) – largest is a flag, if set to true, algorithm will sort by descending order, otherwise sort by ascending order. Default is True.
sorted (bool, optional) – controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
tuple(Tensor), return the values and indices. The value data type is the same as the input x. The indices data type is int64.
Examples
import paddle tensor_1 = paddle.to_tensor([1, 4, 5, 7]) value_1, indices_1 = paddle.topk(tensor_1, k=1) print(value_1) # [7] print(indices_1) # [3] tensor_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]]) value_2, indices_2 = paddle.topk(tensor_2, k=1) print(value_2) # [[7] # [6]] print(indices_2) # [[3] # [1]] value_3, indices_3 = paddle.topk(tensor_2, k=1, axis=-1) print(value_3) # [[7] # [6]] print(indices_3) # [[3] # [1]] value_4, indices_4 = paddle.topk(tensor_2, k=1, axis=0) print(value_4) # [[2 6 5 7]] print(indices_4) # [[1 1 0 0]]
-
trace
(
offset=0,
axis1=0,
axis2=1,
name=None
)
[source]
trace¶
-
trace
This OP computes the sum along diagonals of the input tensor x.
If
x
is 2D, returns the sum of diagonal.If
x
has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes of the input tensor x.The argument
offset
determines where diagonals are taken from input tensor x:If offset = 0, it is the main diagonal.
If offset > 0, it is above the main diagonal.
If offset < 0, it is below the main diagonal.
Note that if offset is out of input’s shape indicated by axis1 and axis2, 0 will be returned.
- Parameters
-
x (Tensor) – The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
offset (int, optional) – Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
axis1 (int, optional) – The first axis with respect to take diagonal. Default: 0.
axis2 (int, optional) – The second axis with respect to take diagonal. Default: 1.
name (str, optional) – Normally there is no need for user to set this property. For more information, please refer to Name. Default: None.
- Returns
-
the output data type is the same as input data type.
- Return type
-
Tensor
Examples
import paddle case1 = paddle.randn([2, 3]) case2 = paddle.randn([3, 10, 10]) case3 = paddle.randn([3, 10, 5, 10]) data1 = paddle.trace(case1) # data1.shape = [1] data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3] data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
-
transpose
(
perm,
name=None
)
[source]
transpose¶
-
Permute the data dimensions of input according to perm.
The i-th dimension of the returned tensor will correspond to the perm[i]-th dimension of input.
- Parameters
-
x (Tensor) – The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
perm (list|tuple) – Permute the input according to the data of perm.
name (str) – The name of this layer. It is optional.
- Returns
-
A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.
- Return type
-
Tensor
For Example:
x = [[[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12]] [[13 14 15 16] [17 18 19 20] [21 22 23 24]]] shape(x) = [2,3,4] # Example 1 perm0 = [1,0,2] y_perm0 = [[[ 1 2 3 4] [13 14 15 16]] [[ 5 6 7 8] [17 18 19 20]] [[ 9 10 11 12] [21 22 23 24]]] shape(y_perm0) = [3,2,4] # Example 2 perm1 = [2,1,0] y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]] [[ 2 14] [ 6 18] [10 22]] [[ 3 15] [ 7 19] [11 23]] [[ 4 16] [ 8 20] [12 24]]] shape(y_perm1) = [4,3,2]
Examples
import paddle x = paddle.randn([2, 3, 4]) x_transposed = paddle.transpose(x, perm=[1, 0, 2]) print(x_transposed.shape) # [3L, 2L, 4L]
-
trunc
(
name=None
)
[source]
trunc¶
-
This API is used to returns a new tensor with the truncated integer values of input.
- Parameters
-
input (Tensor) – The input tensor, it’s data type should be int32, int64, float32, float64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
The output Tensor of trunc.
- Return type
-
Tensor
Examples
import paddle input = paddle.rand([2,2],'float32') print(input) # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [[0.02331470, 0.42374918], # [0.79647720, 0.74970269]]) output = paddle.trunc(input) print(output) # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [[0., 0.], # [0., 0.]]))
-
unbind
(
axis=0
)
[source]
unbind¶
-
Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
- Parameters
-
input (Tensor) – The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
axis (int32|int64, optional) – A scalar with type
int32|int64
shape [1]. The dimension along which to unbind. If \(axis < 0\), the dimension to unbind along is \(rank(input) + axis\). Default is 0.
- Returns
-
The list of segmented Tensor variables.
- Return type
-
list(Tensor)
Example
import paddle import numpy as np # input is a variable which shape is [3, 4, 5] np_input = np.random.rand(3, 4, 5).astype('float32') input = paddle.to_tensor(np_input) [x0, x1, x2] = paddle.unbind(input, axis=0) # x0.shape [4, 5] # x1.shape [4, 5] # x2.shape [4, 5] [x0, x1, x2, x3] = paddle.unbind(input, axis=1) # x0.shape [3, 5] # x1.shape [3, 5] # x2.shape [3, 5] # x3.shape [3, 5]
-
uniform_
(
min=- 1.0,
max=1.0,
seed=0,
name=None
)
uniform_¶
-
This is the inplace version of OP
uniform
, which returns a Tensor filled with random values sampled from a uniform distribution. The output Tensor will be inplaced with inputx
. Please refer to api_tensor_uniform.- Parameters
-
x (Tensor) – The input tensor to be filled with random values.
min (float|int, optional) – The lower bound on the range of random values to generate,
min
is included in the range. Default is -1.0.max (float|int, optional) – The upper bound on the range of random values to generate,
max
is excluded in the range. Default is 1.0.seed (int, optional) – Random seed used for generating samples. If seed is 0, it will use the seed of the global default generator (which can be set by paddle.seed). Note that if seed is not 0, this operator will always generate the same random numbers every time. Default is 0.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
The input tensor x filled with random values sampled from a uniform distribution in the range [
min
,max
). - Return type
-
Tensor
Examples
import paddle # example: x = paddle.ones(shape=[3, 4]) x.uniform_() print(x) # [[ 0.84524226, 0.6921872, 0.56528175, 0.71690357], # random # [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random # [ 0.433519, 0.39483607, -0.8660099, 0.83664286]] # random
-
unique
(
return_index=False,
return_inverse=False,
return_counts=False,
axis=None,
dtype='int64',
name=None
)
[source]
unique¶
-
Returns the unique elements of x in ascending order.
- Parameters
-
x (Tensor) – The input tensor, it’s data type should be float32, float64, int32, int64.
return_index (bool, optional) – If True, also return the indices of the input tensor that result in the unique Tensor.
return_inverse (bool, optional) – If True, also return the indices for where elements in the original input ended up in the returned unique tensor.
return_counts (bool, optional) – If True, also return the counts for each unique element.
axis (int, optional) – The axis to apply unique. If None, the input will be flattened. Default: None.
dtype (np.dtype|str, optional) – The date type of indices or inverse tensor: int32 or int64. Default: int64.
name (str, optional) – Name for the operation. For more information, please refer to Name. Default: None.
- Returns
-
- (out, indices, inverse, counts). out is the unique tensor for x. indices is
-
provided only if return_index is True. inverse is provided only if return_inverse is True. counts is provided only if return_counts is True.
- Return type
-
tuple
Examples
import paddle x = paddle.to_tensor([2, 3, 3, 1, 5, 3]) unique = paddle.unique(x) np_unique = unique.numpy() # [1 2 3 5] _, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True) np_indices = indices.numpy() # [3 0 1 4] np_inverse = inverse.numpy() # [1 2 2 0 3 2] np_counts = counts.numpy() # [1 1 3 1] x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]]) unique = paddle.unique(x) np_unique = unique.numpy() # [0 1 2 3] unique = paddle.unique(x, axis=0) np_unique = unique.numpy() # [[2 1 3] # [3 0 1]]
-
unique_consecutive
(
return_inverse=False,
return_counts=False,
axis=None,
dtype='int64',
name=None
)
[source]
unique_consecutive¶
-
Eliminates all but the first element from every consecutive group of equivalent elements.
Note
This function is different from
paddle.unique()
in the sense that this function only eliminates consecutive duplicate values. This semantics is similar to std::unique in C++.- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
return_inverse (bool, optional) – If True, also return the indices for where elements in the original input ended up in the returned unique consecutive tensor. Default is False.
return_counts (bool, optional) – If True, also return the counts for each unique consecutive element. Default is False.
axis (int, optional) – The axis to apply unique consecutive. If None, the input will be flattened. Default is None.
dtype (np.dtype|str, optional) – The data type inverse tensor: int32 or int64. Default: int64.
name (str, optional) – Name for the operation. For more information, please refer to Name. Default is None.
- Returns
-
(out, inverse, counts). out is the unique consecutive tensor for x. inverse is provided only if return_inverse is True. counts is provided only if return_counts is True.
- Return type
-
tuple
Example
import paddle x = paddle.to_tensor([1, 1, 2, 2, 3, 1, 1, 2]) output = paddle.unique_consecutive(x) # np_output = output.numpy() # [1 2 3 1 2] _, inverse, counts = paddle.unique_consecutive(x, return_inverse=True, return_counts=True) np_inverse = inverse.numpy() # [0 0 1 1 2 3 3 4] np_counts = inverse.numpy() # [2 2 1 2 1] x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]]) output = paddle.unique_consecutive(x, axis=0) # np_output = output.numpy() # [2 1 3 0 1 2 1 3 2 1 3] x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3], [2, 1, 3]]) output = paddle.unique_consecutive(x, axis=0) # np_output = output.numpy() # [[2 1 3] # [3 0 1] # [2 1 3]]
-
unsqueeze
(
axis,
name=None
)
[source]
unsqueeze¶
-
Insert single-dimensional entries to the shape of input Tensor
x
. Takes one required argument axis, a dimension or list of dimensions that will be inserted. Dimension indices in axis are as seen in the output tensor.Note that the output Tensor will share data with origin Tensor and doesn’t have a Tensor copy in
dygraph
mode. If you want to use the Tensor copy version, please use Tensor.clone likeunsqueeze_clone_x = x.unsqueeze(-1).clone()
.- Parameters
-
x (Tensor) – The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
axis (int|list|tuple|Tensor) – Indicates the dimensions to be inserted. The data type is
int32
. Ifaxis
is a list or tuple, the elements of it should be integers or Tensors with shape [1]. Ifaxis
is a Tensor, it should be an 1-D Tensor . Ifaxis
is negative,axis = axis + ndim(x) + 1
.name (str|None) – Name for this layer. Please refer to Name, Default None.
- Returns
-
Unsqueezed Tensor with the same data type as input Tensor.
- Return type
-
Tensor
Examples
import paddle x = paddle.rand([5, 10]) print(x.shape) # [5, 10] out1 = paddle.unsqueeze(x, axis=0) print(out1.shape) # [1, 5, 10] out2 = paddle.unsqueeze(x, axis=[0, 2]) print(out2.shape) # [1, 5, 1, 10] axis = paddle.to_tensor([0, 1, 2]) out3 = paddle.unsqueeze(x, axis=axis) print(out3.shape) # [1, 1, 1, 5, 10] # out1, out2, out3 share data with x in dygraph mode x[0, 0] = 10. print(out1[0, 0, 0]) # [10.] print(out2[0, 0, 0, 0]) # [10.] print(out3[0, 0, 0, 0, 0]) # [10.]
-
unsqueeze_
(
axis,
name=None
)
[source]
unsqueeze_¶
-
Inplace version of
unsqueeze
API, the output Tensor will be inplaced with inputx
. Please refer to api_paddle_tensor_unsqueeze.
-
unstack
(
axis=0,
num=None
)
[source]
unstack¶
-
- Alias_main
-
paddle.unstack :alias: paddle.unstack,paddle.tensor.unstack,paddle.tensor.manipulation.unstack :old_api: paddle.fluid.layers.unstack
UnStack Layer
This layer unstacks input Tensor
x
into several Tensors alongaxis
.If
axis
< 0, it would be replaced withaxis+rank(x)
. Ifnum
is None, it would be inferred fromx.shape[axis]
, and ifx.shape[axis]
<= 0 or is unknown,ValueError
is raised.- Parameters
-
x (Tensor) – Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
axis (int) – The axis along which the input is unstacked.
num (int|None) – The number of output variables.
- Returns
-
The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.
- Return type
-
list(Tensor)
- Raises
-
ValueError – If x.shape[axis] <= 0 or axis is not in range [-D, D).
Examples
import paddle x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32') # create a tensor with shape=[2, 3, 5] y = paddle.unstack(x, axis=1) # unstack with second axis, which results 3 tensors with shape=[2, 5]
-
value
(
self: paddle.fluid.core_avx.VarBase
)
paddle::framework::Variable
value¶
-
var
(
axis=None,
unbiased=True,
keepdim=False,
name=None
)
[source]
var¶
-
Computes the variance of
x
alongaxis
.- Parameters
-
x (Tensor) – The input Tensor with data type float32, float64.
axis (int|list|tuple, optional) – The axis along which to perform variance calculations.
axis
should be int, list(int) or tuple(int). Ifaxis
is a list/tuple of dimension(s), variance is calculated along all element(s) ofaxis
.axis
or element(s) ofaxis
should be in range [-D, D), where D is the dimensions ofx
. Ifaxis
or element(s) ofaxis
is less than 0, it works the same way as \(axis + D\) . Ifaxis
is None, variance is calculated over all elements ofx
. Default is None.unbiased (bool, optional) – Whether to use the unbiased estimation. If
unbiased
is True, the divisor used in the computation is \(N - 1\), where \(N\) represents the number of elements alongaxis
, otherwise the divisor is \(N\). Default is True.keepdim (bool, optional) – Whether to reserve the reduced dimension(s) in the output Tensor. If
keepdim
is True, the dimensions of the output Tensor is the same asx
except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed inaxis
. Default is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of variance along
axis
ofx
, with the same data type asx
.
Examples
import paddle x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]]) out1 = paddle.var(x) # [2.66666667] out2 = paddle.var(x, axis=1) # [1. 4.33333333]
-
where
(
x,
y,
name=None
)
[source]
where¶
-
Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.
\[\begin{split}out_i = \\begin{cases} x_i, \quad \\text{if} \\ condition_i \\ is \\ True \\\\ y_i, \quad \\text{if} \\ condition_i \\ is \\ False \\\\ \\end{cases}\end{split}\]- Parameters
-
condition (Tensor) – The condition to choose x or y.
x (Tensor) – x is a Tensor with data type float32, float64, int32, int64.
y (Tensor) – y is a Tensor with data type float32, float64, int32, int64.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
A Tensor with the same data dype as x.
- Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2]) y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0]) out = paddle.where(x>1, x, y) print(out) #out: [1.0, 1.0, 3.2, 1.2]
-
zero_
(
)
zero_¶
-
- Notes:
-
This API is ONLY available in Dygraph mode
This function fill the Tensor with zero inplace.
- Parameters
-
x (Tensor) –
x
is the Tensor we want to filled with zero inplace - Returns
-
Tensor x filled with zero inplace
- Return type
-
x(Tensor)
Examples
import paddle tensor = paddle.to_tensor([0, 1, 2, 3, 4]) tensor.zero_() print(tensor.tolist()) #[0, 0, 0, 0, 0]
-
abs
(
name=None
)
[source]