bilateral_slice¶
- paddle.fluid.contrib.layers.nn. bilateral_slice ( x, guide, grid, has_offset, name=None ) [source]
-
- Alias_main
-
paddle.nn.functional.bilateral_slice :alias: paddle.nn.functional.bilateral_slice,paddle.nn.functional.vision.bilateral_slice :old_api: paddle.fluid.layers.bilateral_slice
This operation implements bilateral slicing on the input according to the guide map. For more information of bilateral slicing, please refer to Deep Bilateral Learning for Real-Time Image Enhancement <https://groups.csail.mit.edu/graphics/hdrnet/data/hdrnet.pdf>_
- Parameters
-
x (Variable) – The input tensor, which is a 4-D tensor with shape [N, C, H, W], N is the batch size, C is the channel number, H and W is the feature height and width. The data type is float32 and float64.
guide (Variable) – Input grid tensor of shape [N, H, W]. The data type is float32 and float64.
grid (Variable) – Input grid tensor of shape [N, C, D, H, W]. The data type is float32 and float64.
has_offset (bool) – Whether to slice with affine offset.
name (str, optional) – For detailed information, please refer to Name. Usually name is no need to set and None by default.
- Returns
-
Output of shape [N, C, H, W]. The data type is same as input tensor.
- Return type
-
Variable
Examples
import paddle.fluid as fluid x = fluid.data(name='x', shape=[None, 3, 101, 60], dtype='float32') guide = fluid.data(name='guide', shape=[None, 101, 60], dtype='float32') grid = fluid.data(name='grid', shape=[None, 12, 8, 10, 6], dtype='float32') # without offset output = fluid.contrib.bilateral_slice(x, guide, grid, has_offset=False) # has offset output = fluid.contrib.bilateral_slice(x, guide, grid, has_offset=True)