min¶
- paddle. min ( x, axis=None, keepdim=False, name=None ) [source]
-
Computes the minimum of tensor elements over the given axis
- Parameters
-
x (Tensor) – A tensor, the data type is float32, float64, int32, int64.
axis (int|list|tuple, optional) – The axis along which the minimum is computed. If
None
, compute the minimum over all elements of x and return a Tensor with a single element, otherwise must be in the range \([-x.ndim, x.ndim)\). If \(axis[i] < 0\), the axis to reduce is \(x.ndim + axis[i]\).keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the x unless
keepdim
is true, default value is False.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
Tensor, results of minimum on the specified axis of input tensor, it’s data type is the same as input’s Tensor.
Examples
import paddle # x is a tensor with shape [2, 4] # the axis is a int element x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9], [0.1, 0.2, 0.6, 0.7]]) result1 = paddle.min(x) print(result1) #[0.1] result2 = paddle.min(x, axis=0) print(result2) #[0.1 0.2 0.5 0.7] result3 = paddle.min(x, axis=-1) print(result3) #[0.2 0.1] result4 = paddle.min(x, axis=1, keepdim=True) print(result4) #[[0.2] # [0.1]] # y is a Tensor with shape [2, 2, 2] # the axis is list y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]) result5 = paddle.min(y, axis=[1, 2]) print(result5) #[1. 5.] result6 = paddle.min(y, axis=[0, 1]) print(result6) #[1. 2.]