ModelAverage¶
- class paddle.fluid.optimizer. ModelAverage ( average_window_rate, min_average_window=10000, max_average_window=10000, regularization=None, name=None ) [source]
-
- api_attr
-
Static Graph
The ModelAverage optimizer accumulates specific continuous historical parameters during training. The accumulated historical range can be controlled by the passed
average_window_rate
argument. The averagedParameter
are used in the prediction, which usually can improve the accuracy of the prediction.Accumulate the average of the
Parameter
in the sliding window, the result will be saved in a temporary variable, can be applied to the current model’sParameter
by calling theapply()
method, and the current modelParameter
can be restored by calling therestore()
method.The window size for calculating the average is determined by
average_window_rate
,min_average_window
,max_average_window
and the currentParameter
update times (num_updates).When the cumulative times (num_accumulates) is greater than the specific window threshold (average_window), the accumulated
Parameter
temporary variable is set to 0.0. The following example will help to understand the role of these arguments:if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate): num_accumulates = 0
In the above conditional judgment statement,
num_accumulates
indicates the current accumulated number, which can be abstractly understood as the length of the cumulative window. The length of the window must be at least the length set by themin_average_window
argument, and cannot exceed the length specified by themax_average_window
argument ornum_updates * average_window_rate
, wherenum_updates
indicates the currentParameter
update times,average_window_rate
is a coefficient that calculates the length of the window.- Parameters
-
average_window_rate (float) – The calculate ratio of the window length relative to
Parameter
update times.min_average_window (int, optional) – the minimum size of average window length. The default value is 10000.
max_average_window (int, optional) – The maximum size of average window length. The default value is 10000.
regularization (WeightDecayRegularizer, optional) –
- The strategy of regularization. There are two method:
-
api_fluid_regularizer_L1Decay , api_fluid_regularizer_L2Decay . If a parameter has set
regularizer using api_fluid_ParamAttr already, the regularization setting here in optimizer will be ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect. Default None, meaning there is no regularization.
name (str, optional) – Normally there is no need for user to set this property. For more information, please refer to Name. The default value is None.
Examples
import paddle.fluid as fluid import numpy # First create the Executor. place = fluid.CPUPlace() # fluid.CUDAPlace(0) exe = fluid.Executor(place) train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): # build net data = fluid.data(name='X', shape=[None, 1], dtype='float32') hidden = fluid.layers.fc(input=data, size=10) loss = fluid.layers.mean(hidden) optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1) optimizer.minimize(loss) # build ModelAverage optimizer model_average = fluid.optimizer.ModelAverage(0.15, min_average_window=10000, max_average_window=12500) exe.run(startup_program) for i in range(12500): x = numpy.random.random(size=(10, 1)).astype('float32') outs = exe.run(program=train_program, feed={'X': x}, fetch_list=[loss.name]) # apply ModelAverage with model_average.apply(exe): x = numpy.random.random(size=(10, 1)).astype('float32') exe.run(program=train_program, feed={'X': x}, fetch_list=[loss.name])
-
apply
(
executor,
need_restore=True
)
apply¶
-
Apply the average of the cumulative
Parameter
to the parameters of the current model.- Parameters
-
executor (fluid.Executor) – The current network executor.
need_restore (bool) – Restore flag variable, if set to True, the network will restore the parameters of the network to the default value, if set to False, it will not be restored. The default value is True.
Examples
import paddle.fluid as fluid import numpy # First create the Executor. place = fluid.CPUPlace() # fluid.CUDAPlace(0) exe = fluid.Executor(place) train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): # build net data = fluid.data(name='X', shape=[None, 1], dtype='float32') hidden = fluid.layers.fc(input=data, size=10) loss = fluid.layers.mean(hidden) optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1) optimizer.minimize(loss) # build ModelAverage optimizer model_average = fluid.optimizer.ModelAverage(0.15, min_average_window=10000, max_average_window=12500) exe.run(startup_program) for i in range(12500): x = numpy.random.random(size=(10, 1)).astype('float32') outs = exe.run(program=train_program, feed={'X': x}, fetch_list=[loss.name]) # apply ModelAverage with model_average.apply(exe): x = numpy.random.random(size=(10, 1)).astype('float32') exe.run(program=train_program, feed={'X': x}, fetch_list=[loss.name])
-
restore
(
executor
)
restore¶
-
Restore
Parameter
values of current model.- Parameters
-
executor (fluid.Executor) – The current network executor.
Examples
import paddle.fluid as fluid import numpy # First create the Executor. place = fluid.CPUPlace() # fluid.CUDAPlace(0) exe = fluid.Executor(place) train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): # build net data = fluid.data(name='X', shape=[None, 1], dtype='float32') hidden = fluid.layers.fc(input=data, size=10) loss = fluid.layers.mean(hidden) optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1) optimizer.minimize(loss) # build ModelAverage optimizer model_average = fluid.optimizer.ModelAverage(0.15, min_average_window=10000, max_average_window=12500) exe.run(startup_program) for i in range(12500): x = numpy.random.random(size=(10, 1)).astype('float32') outs = exe.run(program=train_program, feed={'X': x}, fetch_list=[loss.name]) # apply ModelAverage with model_average.apply(exe, False): x = numpy.random.random(size=(10, 1)).astype('float32') exe.run(program=train_program, feed={'X': x}, fetch_list=[loss.name]) # restore Parameters model_average.restore(exe)
-
append_regularization_ops
(
parameters_and_grads,
regularization=None
)
append_regularization_ops¶
-
Create and add backward regularization Operators
Creates and adds backward regularization operators in the BlockDesc. This will add gradients of the regularizer function to the gradients of the parameters and return these modified gradients. This is the same as implementing weight decay in optimizers for regularization.
- Parameters
-
parameters_and_grads – A list of (parameters, gradients) pairs that need to be regularized.
regularization – A global regularizer. If the parameter is not set. It will be applied with regularizer.
- Returns
-
list of (parameters, gradients) pair with the regularized gradient
- Return type
-
list[(Variable, Variable)]
- Raises
-
Exception – Unknown regularization type
-
apply_gradients
(
params_grads
)
apply_gradients¶
-
Second part of minimize, appending optimization operators for given params_grads pairs.
- Parameters
-
params_grads (list) – list of (param, grad) pair to do optimization.
- Returns
-
A list of operators appended to the current program.
- Return type
-
list
Examples
import paddle.fluid as fluid loss = network() optimizer = fluid.optimizer.SGD(learning_rate=0.1) params_grads = optimizer.backward(loss) # you may append operations for params_grads here # ... optimizer.apply_gradients(params_grads)
-
apply_optimize
(
loss,
startup_program,
params_grads
)
apply_optimize¶
-
Second part of minimize, appending optimization operators for given params_grads pairs. :param loss: loss variable to run optimizations. :type loss: Variable :param startup_program: startup_program for initializing parameters
in parameter_list.
- Parameters
-
params_grads (list) – list of (param, grad) pair to do optimization.
- Returns
-
A list of operators appended to the current program.
- Return type
-
list
-
backward
(
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None,
callbacks=None
)
backward¶
-
The first part of
minimize
, do auto-diff to append backward operations for the current program.- Parameters
-
loss (Variable) –
loss
variable to run optimizations.startup_program (Program, optional) – api_fluid_Program for initializing parameters in
parameter_list
. The default value is None, at this time api_fluid_default_startup_program will be used.parameter_list (Iterable, optional) – Iterable of
Variable
orVariable.name
to update to minimizeloss
. The default value is None, at this time all parameters will be updated.no_grad_set (set, optional) – Set of
Variable
orVariable.name
that don’t need to be updated. The default value is None.callbacks (list, optional) – list of callable objects to run when appending backward operator for one parameter. The default value is None.
- Returns
-
-
list of (param, grad) variable pairs, param is
Parameter
, -
grad is the gradient value corresponding to the parameter.
-
list of (param, grad) variable pairs, param is
- Return type
-
list
Examples
See examples in
apply_gradients
.
-
clear_gradients
(
)
clear_gradients¶
-
Clear the gradients of all optimized parameters for model.
If not, new gradient will accumulat on previous gradient.
- Returns
-
None
Examples
import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(): value = np.arange(26).reshape(2, 13).astype("float32") a = fluid.dygraph.to_variable(value) linear = fluid.Linear(13, 5, dtype="float32") # This can be any optimizer supported by dygraph. adam = fluid.optimizer.Adam(learning_rate = 0.01, parameter_list = linear.parameters()) out = linear(a) out.backward() adam.minimize(out) adam.clear_gradients()
-
current_step_lr
(
)
current_step_lr¶
-
- Api_attr
-
imperative
Get current step learning rate. The return value is all the same When LearningRateDecay is not used, otherwise return the step learning rate.
- Returns
-
The learning rate of the current step.
- Return type
-
float
Examples
import paddle.fluid as fluid import numpy as np # example1: LearningRateDecay is not used, return value is all the same with fluid.dygraph.guard(): emb = fluid.dygraph.Embedding([10, 10]) adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters()) lr = adam.current_step_lr() print(lr) # 0.001 # example2: PiecewiseDecay is used, return the step learning rate with fluid.dygraph.guard(): inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32") linear = fluid.dygraph.nn.Linear(10, 10) inp = fluid.dygraph.to_variable(inp) out = linear(inp) loss = fluid.layers.reduce_mean(out) bd = [2, 4, 6, 8] value = [0.2, 0.4, 0.6, 0.8, 1.0] adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0), parameter_list=linear.parameters()) # first step: learning rate is 0.2 np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True # learning rate for different steps ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0] for i in range(12): adam.minimize(loss) lr = adam.current_step_lr() np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True
-
minimize
(
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None
)
minimize¶
-
Add operations to minimize
loss
by updatingparameter_list
.- Parameters
-
loss (Variable) – A
Variable
containing the value to minimize.startup_program (Program, optional) – api_fluid_Program for initializing parameters in
parameter_list
. The default value is None, at this time api_fluid_default_startup_program will be used.parameter_list (Iterable, optional) – Iterable of
Variable
orVariable.name
to update to minimizeloss
. The default value is None, at this time all parameters will be updated.no_grad_set (set, optional) – Set of
Variable
orVariable.name
that don’t need to be updated. The default value is None.
- Returns
-
tuple (optimize_ops, params_grads), A list of operators appended by minimize and a list of (param, grad) variable pairs, param is
Parameter
, grad is the gradient value corresponding to the parameter. The returned tuple can be passed tofetch_list
inExecutor.run()
to indicate program pruning. If so, the program will be pruned byfeed
andfetch_list
before run, see details inExecutor
. - Return type
-
tuple
Examples
Please refer to the example of current Optimizer.
-
set_dict
(
state_dict
)
set_dict¶
-
Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
- Parameters
-
state_dict (dict) – Dict contains all the Variable needed by optimizer
- Returns
-
None
Examples
import paddle import paddle.fluid as fluid paddle.disable_static() emb = paddle.nn.Embedding(10, 10) state_dict = emb.state_dict() fluid.save_dygraph(state_dict, "paddle_dy") scheduler = paddle.optimizer.lr.NoamDecay( d_model=0.01, warmup_steps=100, verbose=True) adam = paddle.optimizer.Adam( learning_rate=scheduler, parameters=emb.parameters()) state_dict = adam.state_dict() fluid.save_dygraph(state_dict, "paddle_dy") para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
-
set_lr
(
value
)
set_lr¶
-
- Api_attr
-
imperative
Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay, this API cannot be invoked, because it will lead to conflict.
- Parameters
-
value (float|Variable) – the value of learning rate
- Returns
-
None
Examples
import paddle.fluid as fluid with fluid.dygraph.guard(): linear = fluid.dygraph.nn.Linear(10, 10) adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters()) # set learning rate manually by python float value lr_list = [0.2, 0.3, 0.4, 0.5, 0.6] for i in range(5): adam.set_lr(lr_list[i]) lr = adam.current_step_lr() print("current lr is {}".format(lr)) # Print: # current lr is 0.2 # current lr is 0.3 # current lr is 0.4 # current lr is 0.5 # current lr is 0.6 # set learning rate manually by framework Variable lr_var = fluid.layers.create_global_var( shape=[1], value=0.7, dtype='float32') adam.set_lr(lr_var) lr = adam.current_step_lr() print("current lr is {}".format(lr)) # Print: # current lr is 0.7
-
set_state_dict
(
state_dict
)
set_state_dict¶
-
Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
- Parameters
-
state_dict (dict) – Dict contains all the Variable needed by optimizer
- Returns
-
None
Examples
import paddle import paddle.fluid as fluid paddle.disable_static() emb = paddle.nn.Embedding(10, 10) state_dict = emb.state_dict() fluid.save_dygraph(state_dict, "paddle_dy") scheduler = paddle.optimizer.lr.NoamDecay( d_model=0.01, warmup_steps=100, verbose=True) adam = paddle.optimizer.Adam( learning_rate=scheduler, parameters=emb.parameters()) state_dict = adam.state_dict() fluid.save_dygraph(state_dict, "paddle_dy") para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
-
state_dict
(
)
state_dict¶
-
Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict. If the optimizer never be called(minimize function), the state_dict is empty.
Args: None :returns: dict contains all the variable used by optimizer :rtype: state_dict(dict)
Examples
import paddle.fluid as fluid with fluid.dygraph.guard(): emb = fluid.dygraph.Embedding([10, 10]) adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters()) state_dict = adam.state_dict()