StepDecay¶
- class paddle.fluid.dygraph.learning_rate_scheduler. StepDecay ( learning_rate, step_size, decay_rate=0.1 ) [source]
-
- Api_attr
-
imperative
Decays the learning rate of
optimizer
bydecay_rate
everystep_size
number of epoch.The algorithm can be described as the code below.
learning_rate = 0.5 step_size = 30 decay_rate = 0.1 learning_rate = 0.5 if epoch < 30 learning_rate = 0.05 if 30 <= epoch < 60 learning_rate = 0.005 if 60 <= epoch < 90 ...
- Parameters
-
learning_rate (float|int) – The initial learning rate. It can be set to python float or int number.
step_size (int) – Period of learning rate decay.
decay_rate (float, optional) – The Ratio that the learning rate will be reduced.
new_lr = origin_lr * decay_rate
. It should be less than 1.0. Default: 0.1.
- Returns
-
None.
Examples
import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(): x = np.random.uniform(-1, 1, [10, 10]).astype("float32") linear = fluid.dygraph.Linear(10, 10) input = fluid.dygraph.to_variable(x) scheduler = fluid.dygraph.StepDecay(0.5, step_size=3) adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters()) for epoch in range(9): for batch_id in range(5): out = linear(input) loss = fluid.layers.reduce_mean(out) adam.minimize(loss) scheduler.epoch() print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr())) # epoch:0, current lr is 0.5 # epoch:1, current lr is 0.5 # epoch:2, current lr is 0.5 # epoch:3, current lr is 0.05 # epoch:4, current lr is 0.05 # epoch:5, current lr is 0.05 # epoch:6, current lr is 0.005 # epoch:7, current lr is 0.005 # epoch:8, current lr is 0.005
-
create_lr_var
(
lr
)
create_lr_var¶
-
convert lr from float to variable
- Parameters
-
lr – learning rate
- Returns
-
learning rate variable
-
epoch
(
epoch=None
)
epoch¶
-
compueted learning_rate and update it when invoked.
-
set_dict
(
state_dict
)
set_dict¶
-
Loads the schedulers state.
-
set_state_dict
(
state_dict
)
set_state_dict¶
-
Loads the schedulers state.
-
state_dict
(
)
state_dict¶
-
Returns the state of the scheduler as a
dict
.It is a subset of self.__dict__ .