Sequential¶
- class paddle.nn. Sequential ( *layers ) [source]
-
Sequential container. Sub layers will be added to this container in the order of argument in the constructor. The argument passed to the constructor can be iterable Layers or iterable name Layer pairs.
- Parameters
-
layers (Layer|list|tuple) – Layer or list/tuple of iterable name Layer pair.
Examples
import paddle import numpy as np data = np.random.uniform(-1, 1, [30, 10]).astype('float32') data = paddle.to_tensor(data) # create Sequential with iterable Layers model1 = paddle.nn.Sequential( paddle.nn.Linear(10, 1), paddle.nn.Linear(1, 2) ) model1[0] # access the first layer res1 = model1(data) # sequential execution # create Sequential with name Layer pairs model2 = paddle.nn.Sequential( ('l1', paddle.nn.Linear(10, 2)), ('l2', paddle.nn.Linear(2, 3)) ) model2['l1'] # access l1 layer model2.add_sublayer('l3', paddle.nn.Linear(3, 3)) # add sublayer res2 = model2(data) # sequential execution
-
forward
(
input
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments