accuracy¶
- paddle.static. accuracy ( input, label, k=1, correct=None, total=None ) [source]
-
accuracy layer. Refer to the https://en.wikipedia.org/wiki/Precision_and_recall
This function computes the accuracy using the input and label. If the correct label occurs in top k predictions, then correct will increment by one. Note: the dtype of accuracy is determined by input. the input and label dtype can be different.
- Parameters
-
input (Variable) – The input of accuracy layer, which is the predictions of network. A LoDTensor or Tensor with type float32,float64. The shape is
[sample_number, class_dim]
.label (Variable) – The label of dataset. LoDTensor or Tensor with type int32,int64. The shape is
[sample_number, 1]
.k (int) – The top k predictions for each class will be checked. Data type is int64 or int32.
correct (Variable) – The correct predictions count. A Tensor with type int64 or int32.
total (Variable) – The total entries count. A tensor with type int64 or int32.
- Returns
-
The correct rate. A Tensor with type float32.
- Return type
-
Variable
Examples
import numpy as np import paddle import paddle.static as static import paddle.nn.functional as F paddle.enable_static() data = static.data(name="input", shape=[-1, 32, 32], dtype="float32") label = static.data(name="label", shape=[-1,1], dtype="int") fc_out = static.nn.fc(x=data, size=10) predict = F.softmax(x=fc_out) result = static.accuracy(input=predict, label=label, k=5) place = paddle.CPUPlace() exe = static.Executor(place) exe.run(static.default_startup_program()) x = np.random.rand(3, 32, 32).astype("float32") y = np.array([[1],[0],[1]]) output= exe.run(feed={"input": x,"label": y}, fetch_list=[result[0]]) print(output) #[array([0.], dtype=float32)]