Fleet

class paddle.distributed.fleet. Fleet [source]

Unified API for distributed training of PaddlePaddle Please reference the https://github.com/PaddlePaddle/FleetX for details

Returns

A Fleet instance

Return type

Fleet

Example for collective training:

import paddle
paddle.enable_static()
import paddle.distributed.fleet as fleet

fleet.init(is_collective=True)

strategy = fleet.DistributedStrategy()
optimizer = paddle.optimizer.SGD(learning_rate=0.001)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

# do distributed training

Example for parameter server training:

import paddle
paddle.enable_static()
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
fleet.init(strategy=strategy)

optimizer = paddle.optimizer.SGD(learning_rate=0.001)
optimizer = fleet.distributed_optimizer(optimizer)

if fleet.is_first_worker():
    print("this is first worker")

print("current node index: {}".format(fleet.worker_index()))
print("total number of worker num: {}".format(fleet.worker_num()))

if fleet.is_worker():
    print("this is worker")
print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))

print("server num: {}".format(fleet.server_num()))
print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))

if fleet.is_server():
    print("this is server")
fleet.stop_worker()
init ( role_maker=None, is_collective=False, strategy=None ) [source]

init

Initialize role_maker in Fleet.

This function is responsible for the distributed architecture what you want to run your code behind.

Parameters
  • role_maker (RoleMakerBase, optional) – A RoleMakerBase containing the configuration of environment variables related to distributed training.If you did not initialize the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker. The default value is None.

  • is_collective (Boolean, optional) – A Boolean variable determines whether the program runs on the CPU or GPU. False means set distributed training using CPU, and True means GPU.The default value is False.The default value is False.

  • strategy (DistributedStrategy) – Extra properties for distributed training. For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.

Returns

None

Examples1:

import paddle.distributed.fleet as fleet
fleet.init()

Examples2:

import paddle.distributed.fleet as fleet
fleet.init(is_collective=True)

Examples3:

import paddle.distributed.fleet as fleet
role = fleet.PaddleCloudRoleMaker()
fleet.init(role)

Examples4:

import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
fleet.init(strategy=strategy)
is_first_worker ( ) [source]

is_first_worker

Check whether the node is the first instance of worker.

Returns

True if this is the first node of worker,

False if not.

Return type

bool

Examples

import paddle.distributed.fleet as fleet
fleet.init()
fleet.is_first_worker()
worker_index ( ) [source]

worker_index

Get current worker index.

Returns

node id

Return type

int

Examples

import paddle.distributed.fleet as fleet
fleet.init()
fleet.worker_index()
worker_num ( ) [source]

worker_num

Get current total worker number.

Returns

worker numbers

Return type

int

Examples

import paddle.distributed.fleet as fleet
fleet.init()
fleet.worker_num()
is_worker ( ) [source]

is_worker

Check whether the node is an instance of worker.

Returns

True if this is a node of worker,

False if not.

Return type

bool

Examples

import paddle.distributed.fleet as fleet
fleet.init()
fleet.is_worker()
worker_endpoints ( to_string=False ) [source]

worker_endpoints

Get current worker endpoints, such as [“127.0.0.1:1001”, “127.0.0.1:1002”].

Returns

server endpoints

Return type

list/string

Examples

import paddle.distributed.fleet as fleet
fleet.init()
fleet.worker_endpoints()
server_num ( ) [source]

server_num

Get current total worker number.

Returns

server number

Return type

int

Examples

import paddle.distributed.fleet as fleet
fleet.init()
fleet.server_num()
server_index ( ) [source]

server_index

Get current server index.

Returns

node id

Return type

int

Examples

import paddle.distributed.fleet as fleet
fleet.init()
fleet.server_index()
server_endpoints ( to_string=False ) [source]

server_endpoints

Get current server endpoints, such as [“127.0.0.1:1001”, “127.0.0.1:1002”].

Returns

server endpoints

Return type

list/string

Examples

import paddle.distributed.fleet as fleet
fleet.init()
fleet.server_endpoints()
is_server ( ) [source]

is_server

Check whether the node is an instance of server.

Returns

True if this is a node of server,

False if not.

Return type

bool

Examples

import paddle.distributed.fleet as fleet
fleet.init()
fleet.is_server()
barrier_worker ( ) [source]

barrier_worker

barrier all workers

Returns

None

init_worker ( ) [source]

init_worker

initialize Communicator for parameter server training.

Returns

None

Examples

import paddle.distributed.fleet as fleet
fleet.init()

# build net
# fleet.distributed_optimizer(...)

fleet.init_worker()
init_server ( *args, **kwargs ) [source]

init_server

init_server executor to initialize startup program, if the args is not empty, it will run load_persistables for increment training.

Returns

None

Examples

import paddle.distributed.fleet as fleet
fleet.init()

# build net
# fleet.distributed_optimizer(...)

fleet.init_server()
load_model ( path, mode ) [source]

load_model

load fleet model from path

Returns

None

Examples

import paddle.distributed.fleet as fleet
fleet.init()

# build net
# fleet.distributed_optimizer(...)

fleet.load_model("path", "mode")
run_server ( ) [source]

run_server

run server will run pserver main program with executor.

Returns

None

Examples

import paddle.distributed.fleet as fleet
fleet.init()

# build net
# fleet.distributed_optimizer(...)

if fleet.is_server():
    fleet.init_server()
stop_worker ( ) [source]

stop_worker

stop Communicator and give training complete notice to parameter server.

Returns

None

Examples

import paddle.distributed.fleet as fleet
fleet.init()

# build net
# fleet.distributed_optimizer(...)

fleet.init_server()
save_inference_model ( executor, dirname, feeded_var_names, target_vars, main_program=None, export_for_deployment=True, mode=0 ) [source]

save_inference_model

save inference model for inference.

Returns

None

Examples

import paddle.distributed.fleet as fleet
fleet.init()

# build net
# fleet.distributed_optimizer(...)

fleet.init_server()
save_persistables ( executor, dirname, main_program=None, mode=0 ) [source]

save_persistables

saves all persistable tensors from main_program to the folder dirname. You can refer to

The dirname is used to specify the folder where persistable tensors are going to be saved. If you would like to save tensors in separate files, set filename None.

Parameters
  • executor (Executor) – The executor to run for saving persistable tensors. You can refer to Executor for more details.

  • dirname (str, optional) – The saving directory path. When you need to save the parameter to the memory, set it to None.

  • main_program (Program, optional) – The program whose persistbale tensors will be saved. Default: None.

Returns

None

Examples

import paddle
paddle.enable_static()
import paddle.distributed.fleet as fleet

fleet.init()

# build net
# fleet.distributed_optimizer(...)

exe = paddle.static.Executor(paddle.CPUPlace())
fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
distributed_optimizer ( optimizer, strategy=None ) [source]

distributed_optimizer

Optimizer for distributed training.

For the distributed training, this method would rebuild a new instance of DistributedOptimizer. Which has basic Optimizer function and special features for distributed training.

Parameters
  • optimizer (Optimizer) – The executor to run for init server.

  • strategy (DistributedStrategy) – Extra properties for distributed optimizer. It is recommended to use DistributedStrategy in fleet.init(). The strategy here is for compatibility. If the strategy in fleet.distributed_optimizer() is not None, then it will overwrite the DistributedStrategy in fleet.init(), which will take effect in distributed training.

Returns

instance of fleet.

Return type

Fleet

Examples

import paddle
import paddle.distributed.fleet as fleet
fleet.init(is_collective=True)
strategy = fleet.DistributedStrategy()
optimizer = paddle.optimizer.SGD(learning_rate=0.001)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
distributed_model ( model ) [source]

distributed_model

Return distributed data parallel model (Only work in dygraph mode)

Parameters

model (Layer) – the user-defind model which inherits Layer.

Returns

distributed data parallel model which inherits Layer.

Examples

import paddle
import paddle.nn as nn
from paddle.distributed import fleet

class LinearNet(nn.Layer):
    def __init__(self):
        super(LinearNet, self).__init__()
        self._linear1 = nn.Linear(10, 10)
        self._linear2 = nn.Linear(10, 1)

    def forward(self, x):
        return self._linear2(self._linear1(x))

# 1. initialize fleet environment
fleet.init(is_collective=True)

# 2. create layer & optimizer
layer = LinearNet()
loss_fn = nn.MSELoss()
adam = paddle.optimizer.Adam(
    learning_rate=0.001, parameters=layer.parameters())

# 3. get data_parallel model using fleet
adam = fleet.distributed_optimizer(adam)
dp_layer = fleet.distributed_model(layer)

# 4. run layer
inputs = paddle.randn([10, 10], 'float32')
outputs = dp_layer(inputs)
labels = paddle.randn([10, 1], 'float32')
loss = loss_fn(outputs, labels)

print("loss:", loss.numpy())

loss.backward()

adam.step()
adam.clear_grad()
state_dict ( ) [source]

state_dict

Get state dict information from optimizer. (Only work in dygraph mode)

Returns

dict contains all the Tensor used by optimizer

Return type

state_dict(dict)

Examples

import numpy as np
import paddle
from paddle.distributed import fleet

fleet.init(is_collective=True)

value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.to_tensor(value)

layer = paddle.nn.Linear(13, 5)
adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())

adam = fleet.distributed_optimizer(adam)
dp_layer = fleet.distributed_model(layer)
state_dict = adam.state_dict()
set_state_dict ( state_dict ) [source]

set_state_dict

Load optimizer state dict. (Only work in dygraph mode)

Parameters

state_dict (dict) – Dict contains all the Tensor needed by optimizer

Returns

None

Examples

import numpy as np
import paddle
from paddle.distributed import fleet

fleet.init(is_collective=True)

value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.to_tensor(value)

layer = paddle.nn.Linear(13, 5)
adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())

adam = fleet.distributed_optimizer(adam)
dp_layer = fleet.distributed_model(layer)
state_dict = adam.state_dict()
paddle.save(state_dict, "paddle_dy")
para_state_dict = paddle.load("paddle_dy")
adam.set_state_dict(para_state_dict)
set_lr ( value ) [source]

set_lr

Set the value of the learning rate manually in the optimizer. (Only work in dygraph mode)

Parameters

value (float|Tensor) – the value of learning rate

Returns

None

Examples

import numpy as np
import paddle
from paddle.distributed import fleet

fleet.init(is_collective=True)

value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.to_tensor(value)

layer = paddle.nn.Linear(13, 5)
adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())

adam = fleet.distributed_optimizer(adam)
dp_layer = fleet.distributed_model(layer)

lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
for i in range(5):
    adam.set_lr(lr_list[i])
    lr = adam.get_lr()
    print("current lr is {}".format(lr))
# Print:
#    current lr is 0.2
#    current lr is 0.3
#    current lr is 0.4
#    current lr is 0.5
#    current lr is 0.6
get_lr ( ) [source]

get_lr

Get current step learning rate. (Only work in dygraph mode)

Returns

The learning rate of the current step.

Return type

float

Examples

import numpy as np
import paddle
from paddle.distributed import fleet

fleet.init(is_collective=True)

value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.to_tensor(value)

layer = paddle.nn.Linear(13, 5)
adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())

adam = fleet.distributed_optimizer(adam)
dp_layer = fleet.distributed_model(layer)

lr = adam.get_lr()
print(lr) # 0.01
step ( ) [source]

step

Execute the optimizer once. (Only work in dygraph mode)

Returns

None

Examples

import paddle
import paddle.nn as nn
from paddle.distributed import fleet

class LinearNet(nn.Layer):
    def __init__(self):
        super(LinearNet, self).__init__()
        self._linear1 = nn.Linear(10, 10)
        self._linear2 = nn.Linear(10, 1)

    def forward(self, x):
        return self._linear2(self._linear1(x))

# 1. initialize fleet environment
fleet.init(is_collective=True)

# 2. create layer & optimizer
layer = LinearNet()
loss_fn = nn.MSELoss()
adam = paddle.optimizer.Adam(
    learning_rate=0.001, parameters=layer.parameters())

# 3. get data_parallel model using fleet
adam = fleet.distributed_optimizer(adam)
dp_layer = fleet.distributed_model(layer)

# 4. run layer
inputs = paddle.randn([10, 10], 'float32')
outputs = dp_layer(inputs)
labels = paddle.randn([10, 1], 'float32')
loss = loss_fn(outputs, labels)

print("loss:", loss.numpy())

loss.backward()

adam.step()
adam.clear_grad()
clear_grad ( ) [source]

clear_grad

Clear the gradients of all optimized parameters for model. (Only work in dygraph mode)

Returns

None

Examples

import paddle
import paddle.nn as nn
from paddle.distributed import fleet

class LinearNet(nn.Layer):
    def __init__(self):
        super(LinearNet, self).__init__()
        self._linear1 = nn.Linear(10, 10)
        self._linear2 = nn.Linear(10, 1)

    def forward(self, x):
        return self._linear2(self._linear1(x))

# 1. initialize fleet environment
fleet.init(is_collective=True)

# 2. create layer & optimizer
layer = LinearNet()
loss_fn = nn.MSELoss()
adam = paddle.optimizer.Adam(
    learning_rate=0.001, parameters=layer.parameters())

# 3. get data_parallel model using fleet
adam = fleet.distributed_optimizer(adam)
dp_layer = fleet.distributed_model(layer)

# 4. run layer
inputs = paddle.randn([10, 10], 'float32')
outputs = dp_layer(inputs)
labels = paddle.randn([10, 1], 'float32')
loss = loss_fn(outputs, labels)

print("loss:", loss.numpy())

loss.backward()

adam.step()
adam.clear_grad()
get_loss_scaling ( )

get_loss_scaling

Return the real-time loss scaling factor.

amp_init ( place, scope=None, test_program=None, use_fp16_test=False )

amp_init

Init the amp training, such as cast fp32 parameters to fp16 type.

Parameters
  • place (CUDAPlace) – place is used to initialize fp16 parameters with fp32 values.

  • scope (Scope) – The scope is used to find fp32 parameters.

  • test_program (Program) – The program is used for testing.

  • use_fp16_test (bool) – Whether to use fp16 testing.

Examples

import numpy as np
import paddle
import paddle.nn.functional as F
paddle.enable_static()

def run_example_code():
    place = paddle.CUDAPlace(0)
    exe = paddle.static.Executor(place)
    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
    # 1) Use fp16_guard to control the range of fp16 kernels used.
    with paddle.static.amp.fp16_guard():
        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
        hidden = paddle.static.nn.fc(pool, size=10)
        loss = paddle.mean(hidden)
    # 2) Create the optimizer and set `multi_precision` to True.
    # Setting `multi_precision` to True can avoid the poor accuracy
    # or the slow convergence in a way.
    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
    amp_list = paddle.static.amp.CustomOpLists(
        custom_black_list=['pool2d'])
    # 4) The entry of Paddle AMP.
    # Enable pure fp16 training by setting `use_pure_fp16` to True.
    optimizer = paddle.static.amp.decorate(
        optimizer,
        amp_list,
        init_loss_scaling=128.0,
        use_dynamic_loss_scaling=True,
        use_pure_fp16=True)
    # If you don't use the default_startup_program(), you sholud pass
    # your defined `startup_program` into `minimize`.
    optimizer.minimize(loss)
    exe.run(paddle.static.default_startup_program())
    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
    optimizer.amp_init(place, scope=paddle.static.global_scope())

if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
    run_example_code()
minimize ( loss, startup_program=None, parameter_list=None, no_grad_set=None ) [source]

minimize

Add distributed operations to minimize loss by updating parameter_list.

Parameters
  • loss (Tensor) – A Tensor containing the value to minimize.

  • startup_program (Program, optional) – api_fluid_Program for initializing parameters in parameter_list. The default value is None, at this time api_fluid_default_startup_program will be used.

  • parameter_list (Iterable, optional) – Iterable of Tensor or Tensor.name to update to minimize loss. The default value is None, at this time all parameters will be updated.

  • no_grad_set (set, optional) – Set of Tensor or Tensor.name that don’t need to be updated. The default value is None.

Returns

tuple (optimize_ops, params_grads), A list of operators appended by minimize and a list of (param, grad) tensor pairs, param is Parameter, grad is the gradient value corresponding to the parameter. The returned tuple can be passed to fetch_list in Executor.run() to indicate program pruning. If so, the program will be pruned by feed and fetch_list before run, see details in Executor.

Return type

tuple

Examples

import paddle
paddle.enable_static()
import paddle.distributed.fleet as fleet
import paddle.nn.functional as F

hid_dim = 10
label_dim = 2
input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
cost = F.cross_entropy(input=prediction, label=input_y)
avg_cost = paddle.mean(x=cost)

fleet.init(is_collective=True)
strategy = fleet.DistributedStrategy()
optimizer = paddle.optimizer.SGD(learning_rate=0.001)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)

# for more examples, please reference https://github.com/PaddlePaddle/FleetX