VisualDL¶
- class paddle.callbacks. VisualDL ( log_dir ) [source]
-
VisualDL callback function.
- Parameters
-
log_dir (str) – The directory to save visualdl log file.
Examples
import paddle import paddle.vision.transforms as T from paddle.static import InputSpec inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')] labels = [InputSpec([None, 1], 'int64', 'label')] transform = T.Compose([ T.Transpose(), T.Normalize([127.5], [127.5]) ]) train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform) eval_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform) net = paddle.vision.models.LeNet() model = paddle.Model(net, inputs, labels) optim = paddle.optimizer.Adam(0.001, parameters=net.parameters()) model.prepare(optimizer=optim, loss=paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy()) ## uncomment following lines to fit model with visualdl callback function # callback = paddle.callbacks.VisualDL(log_dir='visualdl_log_dir') # model.fit(train_dataset, eval_dataset, batch_size=64, callbacks=callback)
-
on_train_begin
(
logs=None
)
on_train_begin¶
-
Called at the start of training.
- Parameters
-
logs (dict) – The logs is a dict or None.
-
on_epoch_begin
(
epoch=None,
logs=None
)
on_epoch_begin¶
-
Called at the beginning of each epoch.
- Parameters
-
epoch (int) – The index of epoch.
logs (dict) – The logs is a dict or None. The logs passed by paddle.Model is None.
-
on_train_batch_end
(
step,
logs=None
)
on_train_batch_end¶
-
Called at the end of each batch in training.
- Parameters
-
step (int) – The index of step (or iteration).
logs (dict) – The logs is a dict or None. The logs passed by paddle.Model is a dict, contains ‘loss’, metrics and ‘batch_size’ of current batch.
-
on_eval_begin
(
logs=None
)
on_eval_begin¶
-
Called at the start of evaluation.
- Parameters
-
logs (dict) – The logs is a dict or None. The keys of logs passed by paddle.Model contains ‘steps’ and ‘metrics’, The steps is number of total steps of validation dataset. The metrics is a list of str including ‘loss’ and the names of paddle.metric.Metric.
-
on_train_end
(
logs=None
)
on_train_end¶
-
Called at the end of training.
- Parameters
-
logs (dict) – The logs is a dict or None. The keys of logs passed by paddle.Model contains ‘loss’, metric names and batch_size.
-
on_eval_end
(
logs=None
)
on_eval_end¶
-
Called at the end of evaluation.
- Parameters
-
logs (dict) – The logs is a dict or None. The logs passed by paddle.Model is a dict contains ‘loss’, metrics and ‘batch_size’ of last batch of validation dataset.