VOC2012¶
- class paddle.vision.datasets. VOC2012 ( data_file=None, mode='train', transform=None, download=True, backend=None ) [source]
-
Implementation of VOC2012 dataset
To speed up the download, we put the data on https://dataset.bj.bcebos.com/voc/VOCtrainval_11-May-2012.tar. Original data can get from http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar.
- Parameters
-
data_file (str) – path to data file, can be set None if
download
is True. Default None, default data path: ~/.cache/paddle/dataset/voc2012mode (str) – ‘train’, ‘valid’ or ‘test’ mode. Default ‘train’.
download (bool) – download dataset automatically if
data_file
is None. Default Truebackend (str, optional) – Specifies which type of image to be returned: PIL.Image or numpy.ndarray. Should be one of {‘pil’, ‘cv2’}. If this option is not set, will get backend from
paddle.vsion.get_image_backend
, default backend is ‘pil’. Default: None.
Examples
import paddle from paddle.vision.datasets import VOC2012 from paddle.vision.transforms import Normalize class SimpleNet(paddle.nn.Layer): def __init__(self): super(SimpleNet, self).__init__() def forward(self, image, label): return paddle.sum(image), label normalize = Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], data_format='HWC') voc2012 = VOC2012(mode='train', transform=normalize, backend='cv2') for i in range(10): image, label= voc2012[i] image = paddle.cast(paddle.to_tensor(image), 'float32') label = paddle.to_tensor(label) model = SimpleNet() image, label= model(image, label) print(image.numpy().shape, label.numpy().shape)