resize_trilinear¶
- paddle.fluid.layers.nn. resize_trilinear ( input, out_shape=None, scale=None, name=None, actual_shape=None, align_corners=True, align_mode=1, data_format='NCDHW' ) [source]
-
This op resizes the input by performing trilinear interpolation based on given output shape which specified by actual_shape, out_shape and scale in priority order.
Warning: the parameter
actual_shape
will be deprecated in the future and only useout_shape
instead.Trilinear interpolation is an extension of linear interpolation for interpolating functions of three variables (e.g. D-direction, H-direction and W-direction in this op) on a rectilinear 3D grid. The linear interpolation is performed on three directions.
For details of trilinear interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Trilinear_interpolation
Align_corners and align_mode are optional parameters,the calculation method of interpolation can be selected by them.
Example:
For scale: if align_corners = True && out_size > 1 : scale_factor = (in_size-1.0)/(out_size-1.0) else: scale_factor = float(in_size/out_size) Bilinear interpolation: if: align_corners = False , align_mode = 0 input : (N,C,D_in,H_in,W_in) output: (N,C,D_out,H_out,W_out) where: D_out = (D_{in}+0.5) * scale_{factor} - 0.5 H_out = (H_{in}+0.5) * scale_{factor} - 0.5 W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,D_in,H_in,W_in) output: (N,C,D_out,H_out,W_out) where: D_out = D_{in} * scale_{factor} H_out = H_{in} * scale_{factor} W_out = W_{in} * scale_{factor}
- Parameters
-
input (Variable) – 5-D Tensor, its data type is float32, float64, or uint8, its data format is specified by
data_format
.out_shape (list|tuple|Variable|None) – The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
scale (float|Variable|None) – The multiplier for the input depth, height or width. At least one of
out_shape
orscale
must be set. Andout_shape
has a higher priority thanscale
. Default: None.name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
actual_shape (Variable) – An optional input to specify output shape dynamically. If provided, image resize according to this given shape rather than
out_shape
andscale
specifying shape. That is to say actual_shape has the highest priority. It is recommended to useout_shape
if you want to specify output shape dynamically, becauseactual_shape
will be deprecated. When using actual_shape to specify output shape, one ofout_shape
andscale
should also be set, otherwise errors would be occurred in graph constructing stage. Default: Nonealign_corners (bool) – an optional bool. Defaults to True. If True, the centers of 4 corner pixels of the input and output tensors are aligned, preserving the values at the corner pixels, If False, are not aligned
align_mode (bool) – (int, default ‘1’), optional for bilinear interpolation, can be ‘0’ for src_idx = scale*(dst_indx+0.5)-0.5 , can be ‘1’ for src_idx = scale*dst_index
data_format (str, optional) – Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: “NCDHW”, “NDHWC”. The default is “NCDHW”. When it is “NCDHW”, the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
- Returns
-
A 5-D Tensor(NCDHW or NDHWC)
- Return type
-
Variable
Examples
#declarative mode import paddle.fluid as fluid import paddle import numpy as np paddle.enable_static() input = fluid.data(name="input", shape=[None,3,6,8,10]) #1 output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12]) #2 #x = np.array([2]).astype("int32") #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32") #fluid.layers.assign(input=x, output=dim1) #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4]) #3 #x = np.array([3,12,12]).astype("int32") #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32") #fluid.layers.assign(input=x, output=shape_tensor) #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor) #4 #x = np.array([0.5]).astype("float32") #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32") #fluid.layers.assign(x,scale_tensor) #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) input_data = np.random.rand(2,3,6,8,10).astype("float32") output_data = exe.run(fluid.default_main_program(), feed={"input":input_data}, fetch_list=[output], return_numpy=True) print(output_data[0].shape) #1 # (2, 3, 12, 12, 12) #2 # (2, 3, 12, 2, 4) #3 # (2, 3, 3, 12, 12) #4 # (2, 3, 3, 4, 5) #imperative mode import paddle.fluid.dygraph as dg with dg.guard(place) as g: input = dg.to_variable(input_data) output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12]) print(output.shape) # [2L, 3L, 12L, 12L, 12L]