scatter¶
- paddle. scatter ( x, index, updates, overwrite=True, name=None ) [source]
-
Scatter Layer Output is obtained by updating the input on selected indices based on updates.
import numpy as np #input: x = np.array([[1, 1], [2, 2], [3, 3]]) index = np.array([2, 1, 0, 1]) # shape of updates should be the same as x # shape of updates with dim > 1 should be the same as input updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]) overwrite = False # calculation: if not overwrite: for i in range(len(index)): x[index[i]] = np.zeros((2)) for i in range(len(index)): if (overwrite): x[index[i]] = updates[i] else: x[index[i]] += updates[i] # output: out = np.array([[3, 3], [6, 6], [1, 1]]) out.shape # [3, 2]
NOTICE: The order in which updates are applied is nondeterministic, so the output will be nondeterministic if index contains duplicates.
- Parameters
-
x (Tensor) – The input N-D Tensor with ndim>=1. Data type can be float32, float64.
index (Tensor) – The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates’s length, and the value in index cannot exceed input’s length.
updates (Tensor) – update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
overwrite (bool) –
The mode that updating the output when there are same indices.
- If True, use the overwrite mode to update the output of the same index,
-
if False, use the accumulate mode to update the output of the same index.Default value is True.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .
- Returns
-
The output is a Tensor with the same shape as x.
- Return type
-
Tensor
Examples
import paddle x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32') index = paddle.to_tensor([2, 1, 0, 1], dtype='int64') updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32') output1 = paddle.scatter(x, index, updates, overwrite=False) # [[3., 3.], # [6., 6.], # [1., 1.]] output2 = paddle.scatter(x, index, updates, overwrite=True) # CPU device: # [[3., 3.], # [4., 4.], # [1., 1.]] # GPU device maybe have two results because of the repeated numbers in index # result 1: # [[3., 3.], # [4., 4.], # [1., 1.]] # result 2: # [[3., 3.], # [2., 2.], # [1., 1.]]