RecomputeOptimizer¶
- class paddle.fluid.optimizer. RecomputeOptimizer ( optimizer ) [source]
-
- api_attr
-
Static Graph
Recompute Optimizer Wrapper
Normally, a training step contains three sub-steps: first, run forward Operators to calculate the loss; second, run backward Operators to calculate gradient of the parameters; third, apply optimization method to update the value of the parameters.
In the forward computation process, all variables that are needed by backward computation process will be kept in memory, which occupy a great amount of memory when the network becomes very deep.
Recompute split the network to k segments. In each segment, It will recompute the forward Operators, before running backward operators. It is very helpful for saving memory.
The Variables that separate a network to segments are called as checkpoints, and users should set it manually. The usage is very simple:
- Parameters
-
optimizer (Optimizer) – The optimizer that is applied to parameters.
Examples
import paddle.fluid as fluid import numpy as np def gen_data(): return {"x": np.random.random(size=(32, 32)).astype('float32'), "y": np.random.randint(2, size=(32, 1)).astype('int64')} def mlp(input_x, input_y, hid_dim=128, label_dim=2): print(input_x) fc_1 = fluid.layers.fc(input=input_x, size=hid_dim) prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=input_y) sum_cost = fluid.layers.reduce_mean(cost) return sum_cost, fc_1, prediction input_x = fluid.layers.data(name="x", shape=[32], dtype='float32') input_y = fluid.layers.data(name="y", shape=[1], dtype='int64') cost, fc_1, pred = mlp(input_x, input_y) sgd = fluid.optimizer.Adam(learning_rate=0.01) sgd = fluid.optimizer.RecomputeOptimizer(sgd) sgd._set_checkpoints([fc_1, pred]) sgd.minimize(cost) print("Finished optimize") place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) step = 10 for i in range(step): cost_val = exe.run(feed=gen_data(), program=fluid.default_main_program(), fetch_list=[cost.name]) print("step=%d cost=%f" % (i, cost_val[0]))
-
load
(
state_dict
)
load¶
-
- api_attr
-
Static Graph
load function is not supported by Recompute Optimizer for now. :return: None
- Parameters
-
state_dict – the dict load by load_persistable method
Examples
import paddle.fluid as fluid import paddle.compat as cpt def mlp(input_x, input_y, hid_dim=128, label_dim=2): fc_1 = fluid.layers.fc(input=input_x, size=hid_dim) prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=input_y) sum_cost = fluid.layers.reduce_mean(cost) return sum_cost, fc_1, prediction input_x = fluid.layers.data(name="x", shape=[32], dtype='float32') input_y = fluid.layers.data(name="y", shape=[1], dtype='int64') cost, fc_1, pred = mlp(input_x, input_y) print("Finished FF") sgd = fluid.optimizer.Adam(learning_rate=0.01) sgd = fluid.optimizer.RecomputeOptimizer(sgd) sgd._set_checkpoints([fc_1, pred]) try: state_dict = {} sgd.load(state_dict) except NotImplementedError as e: print(cpt.get_exception_message(e))
-
apply_gradients
(
params_grads
)
apply_gradients¶
-
call apply_gradients function of self._optimizer.
- Parameters
-
params_grads (list) – list of (param, grad) pair to do optimization.
- Returns
-
A list of operators appended to the current program.
- Return type
-
list
Examples
import paddle.fluid as fluid import paddle.fluid.framework as framework def mlp(input_x, input_y, hid_dim=128, label_dim=2): fc_1 = fluid.layers.fc(input=input_x, size=hid_dim) prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=input_y) sum_cost = fluid.layers.reduce_mean(cost) return sum_cost, fc_1, prediction input_x = fluid.layers.data(name="x", shape=[32], dtype='float32') input_y = fluid.layers.data(name="y", shape=[1], dtype='int64') cost, fc_1, pred = mlp(input_x, input_y) print("Finished FF") sgd = fluid.optimizer.Adam(learning_rate=0.01) sgd = fluid.optimizer.RecomputeOptimizer(sgd) sgd._set_checkpoints([fc_1, pred]) params_grads = sgd.backward( cost, startup_program=None, parameter_list=None, no_grad_set=None) program = cost.block.program with framework.program_guard(program, None): optimize_ops = sgd.apply_gradients(params_grads) print("Finished apply gradients")
-
backward
(
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None,
callbacks=None
)
backward¶
-
call append_backward with checkpoints.
- Parameters
-
loss (Variable) – loss variable to run optimizations.
startup_program (Program) – startup_program for initializing parameters in parameter_list.
parameter_list (list) – list of Variables or Variable.names to update.
no_grad_set (set|None) – set of Variables or Variables.names should be ignored.
callbacks (list|None) – list of callables to run when appending backward operator for one parameter.
checkpoints (list) – list of Variables as checkpoints
Examples
import paddle.fluid as fluid def mlp(input_x, input_y, hid_dim=128, label_dim=2): fc_1 = fluid.layers.fc(input=input_x, size=hid_dim) prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=input_y) sum_cost = fluid.layers.reduce_mean(cost) return sum_cost, fc_1, prediction input_x = fluid.layers.data(name="x", shape=[32], dtype='float32') input_y = fluid.layers.data(name="y", shape=[1], dtype='int64') cost, fc_1, pred = mlp(input_x, input_y) print("Finished FF") sgd = fluid.optimizer.Adam(learning_rate=0.01) sgd = fluid.optimizer.RecomputeOptimizer(sgd) sgd._set_checkpoints([fc_1, pred]) params_grads = sgd.backward( cost, startup_program=None, parameter_list=None, no_grad_set=None) print("Finished backward")
-
apply_optimize
(
loss,
startup_program,
params_grads
)
apply_optimize¶
-
call the apply_optimize function of self._optimizer :param loss: loss variable to run optimizations. :type loss: Variable :param startup_program: startup_program for initializing parameters
in parameter_list.
- Parameters
-
params_grads (list) – list of (param, grad) pair to do optimization.
Examples
-
minimize
(
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None
)
minimize¶
-
Add operations to minimize
loss
by updatingparameter_list
.- Parameters
-
loss (Variable) – A
Variable
containing the value to minimize.startup_program (Program, optional) – api_fluid_Program for initializing parameters in
parameter_list
. The default value is None, at this time api_fluid_default_startup_program will be used.parameter_list (Iterable, optional) – Iterable of
Variable
orVariable.name
to update to minimizeloss
. The default value is None, at this time all parameters will be updated.no_grad_set (set, optional) – Set of
Variable
orVariable.name
that don’t need to be updated. The default value is None.
- Returns
-
tuple (optimize_ops, params_grads), A list of operators appended by minimize and a list of (param, grad) variable pairs, param is
Parameter
, grad is the gradient value corresponding to the parameter. The returned tuple can be passed tofetch_list
inExecutor.run()
to indicate program pruning. If so, the program will be pruned byfeed
andfetch_list
before run, see details inExecutor
. - Return type
-
tuple
Examples
Please refer to the example of current Optimizer.
-
append_regularization_ops
(
parameters_and_grads,
regularization=None
)
append_regularization_ops¶
-
Create and add backward regularization Operators
Creates and adds backward regularization operators in the BlockDesc. This will add gradients of the regularizer function to the gradients of the parameters and return these modified gradients. This is the same as implementing weight decay in optimizers for regularization.
- Parameters
-
parameters_and_grads – A list of (parameters, gradients) pairs that need to be regularized.
regularization – A global regularizer. If the parameter is not set. It will be applied with regularizer.
- Returns
-
list of (parameters, gradients) pair with the regularized gradient
- Return type
-
list[(Variable, Variable)]
- Raises
-
Exception – Unknown regularization type
-
clear_gradients
(
)
clear_gradients¶
-
Clear the gradients of all optimized parameters for model.
If not, new gradient will accumulat on previous gradient.
- Returns
-
None
Examples
import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(): value = np.arange(26).reshape(2, 13).astype("float32") a = fluid.dygraph.to_variable(value) linear = fluid.Linear(13, 5, dtype="float32") # This can be any optimizer supported by dygraph. adam = fluid.optimizer.Adam(learning_rate = 0.01, parameter_list = linear.parameters()) out = linear(a) out.backward() adam.minimize(out) adam.clear_gradients()
-
current_step_lr
(
)
current_step_lr¶
-
- Api_attr
-
imperative
Get current step learning rate. The return value is all the same When LearningRateDecay is not used, otherwise return the step learning rate.
- Returns
-
The learning rate of the current step.
- Return type
-
float
Examples
import paddle.fluid as fluid import numpy as np # example1: LearningRateDecay is not used, return value is all the same with fluid.dygraph.guard(): emb = fluid.dygraph.Embedding([10, 10]) adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters()) lr = adam.current_step_lr() print(lr) # 0.001 # example2: PiecewiseDecay is used, return the step learning rate with fluid.dygraph.guard(): inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32") linear = fluid.dygraph.nn.Linear(10, 10) inp = fluid.dygraph.to_variable(inp) out = linear(inp) loss = fluid.layers.reduce_mean(out) bd = [2, 4, 6, 8] value = [0.2, 0.4, 0.6, 0.8, 1.0] adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0), parameter_list=linear.parameters()) # first step: learning rate is 0.2 np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True # learning rate for different steps ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0] for i in range(12): adam.minimize(loss) lr = adam.current_step_lr() np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True
-
set_dict
(
state_dict
)
set_dict¶
-
Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
- Parameters
-
state_dict (dict) – Dict contains all the Variable needed by optimizer
- Returns
-
None
Examples
import paddle import paddle.fluid as fluid paddle.disable_static() emb = paddle.nn.Embedding(10, 10) state_dict = emb.state_dict() fluid.save_dygraph(state_dict, "paddle_dy") scheduler = paddle.optimizer.lr.NoamDecay( d_model=0.01, warmup_steps=100, verbose=True) adam = paddle.optimizer.Adam( learning_rate=scheduler, parameters=emb.parameters()) state_dict = adam.state_dict() fluid.save_dygraph(state_dict, "paddle_dy") para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
-
set_lr
(
value
)
set_lr¶
-
- Api_attr
-
imperative
Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay, this API cannot be invoked, because it will lead to conflict.
- Parameters
-
value (float|Variable) – the value of learning rate
- Returns
-
None
Examples
import paddle.fluid as fluid with fluid.dygraph.guard(): linear = fluid.dygraph.nn.Linear(10, 10) adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters()) # set learning rate manually by python float value lr_list = [0.2, 0.3, 0.4, 0.5, 0.6] for i in range(5): adam.set_lr(lr_list[i]) lr = adam.current_step_lr() print("current lr is {}".format(lr)) # Print: # current lr is 0.2 # current lr is 0.3 # current lr is 0.4 # current lr is 0.5 # current lr is 0.6 # set learning rate manually by framework Variable lr_var = fluid.layers.create_global_var( shape=[1], value=0.7, dtype='float32') adam.set_lr(lr_var) lr = adam.current_step_lr() print("current lr is {}".format(lr)) # Print: # current lr is 0.7
-
set_state_dict
(
state_dict
)
set_state_dict¶
-
Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
- Parameters
-
state_dict (dict) – Dict contains all the Variable needed by optimizer
- Returns
-
None
Examples
import paddle import paddle.fluid as fluid paddle.disable_static() emb = paddle.nn.Embedding(10, 10) state_dict = emb.state_dict() fluid.save_dygraph(state_dict, "paddle_dy") scheduler = paddle.optimizer.lr.NoamDecay( d_model=0.01, warmup_steps=100, verbose=True) adam = paddle.optimizer.Adam( learning_rate=scheduler, parameters=emb.parameters()) state_dict = adam.state_dict() fluid.save_dygraph(state_dict, "paddle_dy") para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
-
state_dict
(
)
state_dict¶
-
Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict. If the optimizer never be called(minimize function), the state_dict is empty.
Args: None :returns: dict contains all the variable used by optimizer :rtype: state_dict(dict)
Examples
import paddle.fluid as fluid with fluid.dygraph.guard(): emb = fluid.dygraph.Embedding([10, 10]) adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters()) state_dict = adam.state_dict()