maximum

paddle. maximum ( x, y, name=None ) [source]

Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:

\[out = max(x, y)\]

Note: paddle.maximum supports broadcasting. If you want know more about broadcasting, please refer to Broadcasting .

Parameters
  • x (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.

  • y (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.

  • name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.

Returns

N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

Examples

import numpy as np
import paddle

x = paddle.to_tensor([[1, 2], [7, 8]])
y = paddle.to_tensor([[3, 4], [5, 6]])
res = paddle.maximum(x, y)
print(res)
#    [[3, 4],
#     [7, 8]]

x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
y = paddle.to_tensor([3, 0, 4])
res = paddle.maximum(x, y)
print(res)
#    [[3, 2, 4],
#     [3, 2, 4]]

x = paddle.to_tensor([2, 3, 5], dtype='float32')
y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
res = paddle.maximum(x, y)
print(res)
#    [ 2., nan, nan]

x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
res = paddle.maximum(x, y)
print(res)
#    [  5.,   3., inf.]