scatter¶
- paddle.distributed. scatter ( tensor, tensor_list=None, src=0, group=None, use_calc_stream=True ) [source]
-
Scatter a tensor to all participators.
- Parameters
-
tensor (Tensor) – The output Tensor. Its data type should be float16, float32, float64, int32 or int64.
tensor_list (list|tuple) – A list/tuple of Tensors to scatter. Every element in the list must be a Tensor whose data type should be float16, float32, float64, int32 or int64. Default value is None.
src (int) – The source rank id. Default value is 0.
group (Group) – The group instance return by new_group or None for global default group.
use_calc_stream (bool) – Wether to use calculation stream (True) or communication stream (False). Default to True.
- Returns
-
None.
Examples
import numpy as np import paddle from paddle.distributed import init_parallel_env # required: gpu paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id) init_parallel_env() if paddle.distributed.ParallelEnv().local_rank == 0: np_data1 = np.array([7, 8, 9]) np_data2 = np.array([10, 11, 12]) else: np_data1 = np.array([1, 2, 3]) np_data2 = np.array([4, 5, 6]) data1 = paddle.to_tensor(np_data1) data2 = paddle.to_tensor(np_data2) if paddle.distributed.ParallelEnv().local_rank == 0: paddle.distributed.scatter(data1, src=1) else: paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1) out = data1.numpy()