sums¶
- paddle.fluid.layers.tensor. sums ( input, out=None ) [source]
-
This function computes the sum of multiple input Tensors elementwisely.
Case 1, sum of 3 Tensors
# Input Tensors x0.shape = [2, 3] x0.data = [[1., 2., 3.], [4., 5., 6.]] x1.shape = [2, 3] x1.data = [[10., 20., 30.], [40., 50., 60.]] x2.shape = [2, 3] x2.data = [[100., 200., 300.], [400., 500., 600.]] # Output Tensor out.shape = [2, 3] out.data = [[111., 222., 333.], [444., 555., 666.]]
- Parameters
-
input (list) – A list of Variables which hold input Tensors with the same data type and shape. Optional data types are: float32, float64, int32, int64.
out (Variable, optional) – Output Tensor. It can be any existing Variable. The default value is None, then a new Variable will be created and returned.
- Returns
-
- The sum of inputs. The shape and data type is the same with input.
-
If
out
is not None, the returned value isout
.
- Return type
-
Variable
Examples
import paddle.fluid as fluid x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1) x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2) x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3) x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0) # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]]) sum0 = fluid.layers.sums(input=[x0, x1, x2]) # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]]) sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)