polynomial_decay¶
- paddle.fluid.layers.learning_rate_scheduler. polynomial_decay ( learning_rate, decay_steps, end_learning_rate=0.0001, power=1.0, cycle=False ) [source]
-
Applies polynomial decay to the initial learning rate.
if cycle: decay_steps = decay_steps * ceil(global_step / decay_steps) else: global_step = min(global_step, decay_steps) decayed_learning_rate = (learning_rate - end_learning_rate) * (1 - global_step / decay_steps) ^ power + end_learning_rate
- Parameters
-
learning_rate (Variable|float32) – A scalar float32 value or a Variable. This will be the initial learning rate during training.
decay_steps (int32) – A Python int32 number.
end_learning_rate (float) – A Python float number.
power (float) – A Python float number.
cycle (bool) – If set true, decay the learning rate every decay_steps.
- Returns
-
The decayed learning rate
- Return type
-
Variable
Examples
import paddle.fluid as fluid start_lr = 0.01 total_step = 5000 end_lr = 0 lr = fluid.layers.polynomial_decay( start_lr, total_step, end_lr, power=1)