broadcast¶
- paddle.distributed. broadcast ( tensor, src, group=None, use_calc_stream=True ) [source]
-
Broadcast a tensor from the source to all others.
- Parameters
-
tensor (Tensor) – The Tensor to send if current rank is the source, or the tensor to receive otherwise. Its data type should be float16, float32, float64, int32 or int64.
src (int) – The source rank.
group (Group) – The group instance return by new_group or None for global default group.
use_calc_stream (bool) – Wether to use calculation stream (True) or communication stream (False). Default to True.
- Returns
-
None.
Examples
import numpy as np import paddle from paddle.distributed import init_parallel_env paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id) init_parallel_env() if paddle.distributed.ParallelEnv().local_rank == 0: np_data = np.array([[4, 5, 6], [4, 5, 6]]) else: np_data = np.array([[1, 2, 3], [1, 2, 3]]) data = paddle.to_tensor(np_data) paddle.distributed.broadcast(data, 1) out = data.numpy() # [[1, 2, 3], [1, 2, 3]]