reduce¶
- paddle.distributed. reduce ( tensor, dst, op=0, group=None, use_calc_stream=True ) [source]
-
Reduce a tensor to the destination from all others.
- Parameters
-
tensor (Tensor) – The output Tensor for the destination and the input Tensor otherwise. Its data type should be float16, float32, float64, int32 or int64.
dst (int) – The destination rank id.
op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.Min|ReduceOp.PROD) – Optional. The operation used. Default value is ReduceOp.SUM.
group (Group) – The group instance return by new_group or None for global default group.
use_calc_stream (bool) – Wether to use calculation stream (True) or communication stream (False). Default to True.
- Returns
-
None.
Examples
import numpy as np import paddle from paddle.distributed import init_parallel_env paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id) init_parallel_env() if paddle.distributed.ParallelEnv().local_rank == 0: np_data = np.array([[4, 5, 6], [4, 5, 6]]) else: np_data = np.array([[1, 2, 3], [1, 2, 3]]) data = paddle.to_tensor(np_data) paddle.distributed.reduce(data, 0) out = data.numpy() # [[5, 7, 9], [5, 7, 9]]