RandomCrop¶
- class paddle.vision.transforms. RandomCrop ( size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant', keys=None ) [source]
-
Crops the given CV Image at a random location.
- Parameters
-
size (sequence|int) – Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made.
padding (int|sequence|optional) – Optional padding on each border of the image. If a sequence of length 4 is provided, it is used to pad left, top, right, bottom borders respectively. Default: 0.
pad_if_needed (boolean|optional) – It will pad the image if smaller than the desired size to avoid raising an exception. Default: False.
keys (list[str]|tuple[str], optional) – Same as
BaseTransform
. Default: None.
- Shape:
-
img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
output(PIL.Image|np.ndarray|Paddle.Tensor): A random cropped image.
- Returns
-
A callable object of RandomCrop.
Examples
import numpy as np from PIL import Image from paddle.vision.transforms import RandomCrop transform = RandomCrop(224) fake_img = Image.fromarray((np.random.rand(324, 300, 3) * 255.).astype(np.uint8)) fake_img = transform(fake_img) print(fake_img.size)