CosineDecay¶
- class paddle.fluid.dygraph.learning_rate_scheduler. CosineDecay ( learning_rate, step_each_epoch, epochs, begin=0, step=1, dtype='float32' ) [source]
-
- Api_attr
-
imperative
Applies cosine decay to the learning rate.
The algorithm can be described as following.
\[\begin{split}decayed\_learning\_rate = learning\_rate * 0.5 * (math.cos(global\_step * \\frac{math.pi}{step\_each\_epoch} ) + 1)\end{split}\]- Parameters
-
learning_rate (Variable|float) – The initial learning rate. If the type is Variable, it’s a tensor with shape [1], the data type can be float32 or float64. It also can be set to python int number.
step_each_epoch (int) – The number of steps in an epoch.
epochs (int) – The number of epochs.
begin (int, optional) – The begin step. The initial value of global_step described above. The default value is 0.
step (int, optional) – The step size used to calculate the new global_step in the description above. The default value is 1.
dtype (str, optional) – The data type used to create the learning rate variable. The data type can be set as ‘float32’, ‘float64’. The default value is ‘float32’.
- Returns
-
None.
Examples
base_lr = 0.1 with fluid.dygraph.guard(): optimizer = fluid.optimizer.SGD( learning_rate = fluid.dygraph.CosineDecay( base_lr, 10000, 120) )
-
create_lr_var
(
lr
)
create_lr_var¶
-
convert lr from float to variable
- Parameters
-
lr – learning rate
- Returns
-
learning rate variable
-
set_dict
(
state_dict
)
set_dict¶
-
Loads the schedulers state.
-
set_state_dict
(
state_dict
)
set_state_dict¶
-
Loads the schedulers state.
-
state_dict
(
)
state_dict¶
-
Returns the state of the scheduler as a
dict
.It is a subset of self.__dict__ .